• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crowdsensed Data Learning-Driven Prediction of Local Businesses Attractiveness in Smart Cities

Compartir
Ficheros
ISCC-camera-ready.pdf (261.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/748
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Capponi, Andrea; Vitello, Piergiorgio; Fiandrino, Claudio; Cantelmo, Guido; Kliazovich, Dzmitry; Sorger, Ulrich; Bouvry, Pascal
Fecha
2019-06-30
Resumen
Urban planning typically relies on experience-based solutions and traditional methodologies to face urbanization issues and investigate the complex dynamics of cities. Recently, novel data-driven approaches in urban computing have emerged for researchers and companies. They aim to address historical urbanization issues by exploiting sensing data gathered by mobile devices under the so-called mobile crowdsensing (MCS) paradigm. This work shows how to exploit sensing data to improve traditionally experience-based approaches for urban decisions. In particular, we apply widely known Machine Learning (ML) techniques to achieve highly accurate results in predicting categories of local businesses (LBs) (e.g., bars, restaurants), and their attractiveness in terms of classes of temporal demands (e.g., nightlife, business hours). The performance evaluation is conducted in Luxembourg city and the city of Munich with publicly available crowdsensed datasets. The results highlight that our approach does not only achieve high accuracy, but it also unveils important hidden features of the interaction of citizens and LBs.
Compartir
Ficheros
ISCC-camera-ready.pdf (261.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/748
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!