Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía, Rafael
dc.contributor.authorFernández Anta, Antonio 
dc.contributor.authorMancuso, Vincenzo 
dc.contributor.authorCasari, Paolo 
dc.date.accessioned2021-07-13T09:39:03Z
dc.date.available2021-07-13T09:39:03Z
dc.date.issued2019-07-22
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/20.500.12761/729
dc.description.abstractDecision trees are an extremely popular machine learning technique. Unfortunately, overfitting in decision trees still remains an open issue that sometimes prevents achieving good performance. In this paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design, without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open source version of the algorithm.
dc.language.isoeng
dc.publisherIEEE
dc.titleA Novel Hyperparameter-Free Approach to Decision Tree Construction That Avoids Overfitting by Designen
dc.typejournal article
dc.journal.titleIEEE Access
dc.rights.accessRightsopen access
dc.volume.number7
dc.page.final99987
dc.page.initial99978
dc.subject.keywordDecision Trees
dc.subject.keywordRegularization
dc.subject.keywordInterpretability
dc.subject.keywordKolmogorov Complexity
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/2023


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem