• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improvements to the Massive Unsupervised Outlier Detection (MUOD) Algorithm

Compartir
Ficheros
IWAFDA.pdf (134.4Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/727
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Ojo, Oluwasegun; Fernández Anta, Antonio; Lillo, Rosa Elvira
Fecha
2019-05-24
Resumen
We present improvements to the Massive Unsupervised Outlier Detection (MUOD) algorithm, a scalable and unsupervised outlier detection method, especially useful for identifying outliers for functional data. MUOD identifies different types of outliers in samples of curves including shape, magnitude and amplitude outliers. This is done by computing for each curve three indices, which measure outlyingness in terms of shape, magnitude and amplitude relative to the other curves. These indices are then sorted and observations with extremely high indices are labelled as outliers. To further improve the scalability MUOD, we introduce ``fastMUOD", a fast implementation of MUOD which uses the component-wise or the $L_1-$median in the computation of the indices instead of using the whole observation. We also present ``semi-fastMUOD", which uses a sample of the observations in the computation of the indices. As further improvements to MUOD, we discuss a new method for identifying extreme indices which entails the use of a classical boxplot or its adjusted version for skewed distributions. We analyse the performance of the proposed improvements using real and simulated data, and show that outlier detection accuracy is not compromised even with the gains in scalability.
Compartir
Ficheros
IWAFDA.pdf (134.4Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/727
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!