• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Based Network Analysis using Millimeter-Wave Narrow-Band Energy Traces

Compartir
Ficheros
ML_mmW_NetworkAnalysis_TMC.pdf (11.00Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/698
ISSN: 1536-1233
DOI: 10.1109/TMC.2019.2907585
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Scalabrin, Maria; Bielsa, Guillermo; Loch, Adrian; Rossi, Michele; Widmer, Joerg
Fecha
2020-05-01
Resumen
Next-generation wireless networks promise to provide extremely high data rates, especially exploiting the so-called millimeter-wave frequency range. Gaining information from spectrum usage is becoming important to provide smart adaptation capabilities to future network protocol stacks. Issues such as deafness, misaligned antennas, or blockage may severely impact network performance, and their identification is crucial. Despite the complexity of full analytical models, machine learning techniques are progressively being considered to improve spectrum usage at higher layers. In this paper, we design a signal processing technique that uses narrowband physical layer energy traces, obtained from one or multiple channel sniffers. The proposed technique utilizes a combination of template matching and an Explicit Duration Hidden Markov Model (EDHMM) to correctly classify frames, while coping with the non-stationarity of the traces. This leads to a protocol level monitor that does not need to decode the channel at the physical layer, but just infers the type of packets that are exchanged based on sub-sampled energy traces. The performance of this framework is evaluated using off-the-shelf mm-wave wireless devices, quantifying its detection performance in the presence of one or multiple sniffers, and assessing the impact of physical layer parameters such as noise power and signal levels.
Compartir
Ficheros
ML_mmW_NetworkAnalysis_TMC.pdf (11.00Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/698
ISSN: 1536-1233
DOI: 10.1109/TMC.2019.2907585
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!