Mostrar el registro sencillo del ítem

dc.contributor.authorBega, Dario 
dc.contributor.authorGramaglia, Marco 
dc.contributor.authorFiore, Marco 
dc.contributor.authorBanchs, Albert 
dc.contributor.authorCosta-Perez, Xavier
dc.date.accessioned2021-07-13T09:37:35Z
dc.date.available2021-07-13T09:37:35Z
dc.date.issued2019-04-29
dc.identifier.urihttp://hdl.handle.net/20.500.12761/687
dc.description.abstractOrchestrating resources in 5G and beyond-5G systems will be substantially more complex than it used to be in previous generations of mobile networks. In order to take full advantage of the unprecedented possibilities for dynamic reconfiguration offered by network softwarization and virtualization technologies, operators have to embed intelligence in network resource orchestrators. We advocate that the automated, data-driven decisions taken by orchestrators must be guided by considerations on the cost that such decisions involve for the operator. We show that such a strategy can be implemented via a deep learning architecture that forecasts capacity rather than plain traffic, thanks to a novel loss function named α-OMC. We investigate the convergence properties of α-OMC, and provide preliminary results on the performance of the learning process in case studies with real-world mobile network traffic.
dc.language.isoeng
dc.titleα-OMC: Cost-Aware Deep Learning for Mobile Network Resource Orchestrationen
dc.typeconference object
dc.conference.date29 April - 2 May 2019
dc.conference.placeParis, France
dc.conference.titleThe 2nd International Workshop on Network Intelligence (NI 2019), in conjunction with the 38th IEEE International Conference on Computer Communications (IEEE INFOCOM 2019)*
dc.event.typeworkshop
dc.pres.typepaper
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1963


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem