Show simple item record

dc.contributor.authorTomasoni, Mattia
dc.contributor.authorCapponi, Andrea
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorKliazovich, Dzmitry
dc.contributor.authorGranelli, Fabrizio
dc.contributor.authorBouvry, Pascal
dc.date.accessioned2021-07-13T09:35:49Z
dc.date.available2021-07-13T09:35:49Z
dc.date.issued2018-12
dc.identifier.issn1574-1192
dc.identifier.urihttp://hdl.handle.net/20.500.12761/631
dc.description.abstractMobile Crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. The citizens actively participate in the sensing process by contributing data with their mobile devices. To produce data, citizens sustain costs, i.e., the energy consumed for sensing and reporting operations. Hence, devising energy efficient data collection frameworks (DCF) is essential to foster participation. In this work, we investigate from an energy-perspective the performance of different DCFs. Our methodology is as follows: (i) we developed an Android application that implements the DCFs, (ii) we profiled the energy and network performance with a power monitor and Wireshark, (iii) we included the obtained traces into CrowdSenSim simulator for large-scale evaluations in city-wide scenarios such as Luxembourg City, Turin and Washington DC. The amount of collected data, energy consumption and fairness are the performance indexes evaluated. The results unveil that DCFs with continuous data reporting are more energy-efficient and fair than DCFs with probabilistic reporting. The latter exhibit high variability of energy consumption, i.e., to produce the same amount of data, the associated energy cost of different users can vary significantly.
dc.language.isoeng
dc.publisherElsevier
dc.titleWhy energy matters? Profiling energy consumption of mobile crowdsensing data collection frameworksen
dc.typejournal article
dc.journal.titlePervasive and Mobile Computing
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number51
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S1574119217305965
dc.identifier.doihttps://doi.org/10.1016/j.pmcj.2018.10.002
dc.page.final208
dc.page.initial193
dc.subject.keywordMobile crowdsensing
dc.subject.keywordEnergy consumption
dc.subject.keywordData collection
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1901


Files in this item

This item appears in the following Collection(s)

Show simple item record