• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profiling Energy Efficiency of Mobile Crowdsensing Data Collection Frameworks for Smart City Applications

Compartir
Ficheros
mobilecloud-mcs-18.pdf (9.036Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/550
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Tomasoni, Mattia; Capponi, Andrea; Fiandrino, Claudio; Kliazovich, Dzmitry; Granelli, Fabrizio; Bouvry, Pascal
Fecha
2018-03-26
Resumen
Mobile crowdsensing has emerged in the last years and has become one of the most prominent paradigms for urban sensing. In MCS, citizens actively participate in the sensing process by contributing data with their smartphones, tablets, wearables and other mobile devices to a collector. As citizens sustain costs while contributing data, i.e., the energy spent from the batteries for sensing and reporting, devising energy efficient Data Collection Frameworks (DCF) is essential. In this work, we compare energy efficiency of several DCFs through simulations with the CrowdSenSim simulator, which allows to perform large-scale experiments in realistic urban environments. Specifically, the DCF under analysis differ one with each other by the data reporting mechanism implemented and the signaling between users and the collector needed for sensing and reporting decisions. The results reveal that the key criterion differentiating DCFs' energy consumption is the data reporting mechanism. In principle, continuous reporting to the collector should be more energy consuming than probabilistic reporting. However, DCFs with continuous reporting that implement mechanisms to block sensing and data delivery after a certain amount of contribution are more effective in harvesting data from the crowd.
Compartir
Ficheros
mobilecloud-mcs-18.pdf (9.036Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/550
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!