Mostrar el registro sencillo del ítem

dc.contributor.authorFakhreddine, Aymen 
dc.contributor.authorTippenhauer, Nils Ole
dc.contributor.authorGiustiniano, Domenico 
dc.date.accessioned2021-07-13T09:33:06Z
dc.date.available2021-07-13T09:33:06Z
dc.date.issued2018-05-02
dc.identifier.urihttp://hdl.handle.net/20.500.12761/532
dc.description.abstractWe study the problem of deriving proximity metrics based on WiFi fingerprints without the need of external sensors and access to the locations of APs. Applications that benefit from proximity metrics are movement estimation of a single node over time, WiFi fingerprint matching for localization systems and attacks on privacy. Using a large-scale, real-world WiFi fingerprint data set consisting of 200,000 fingerprints resulting from a large deployment of wearable WiFi sensors, we show that metrics from related work perform poorly on real-world data. We analyze the cause for this poor performance, and show that imperfect observations of APs in the neighborhood are the root cause. We then propose improved metrics to provide such proximity estimates, without requiring knowledge of location for the observed AP. Our metrics allow to derive a relative distance estimate based on two observed WiFi fingerprints. We demonstrate that their performance is superior to the related work metrics.
dc.language.isoeng
dc.titleDesign and Large-Scale Evaluation of WiFi Proximity Metricsen
dc.typeconference object
dc.conference.date2-4 May 2018
dc.conference.placeCatania, Italy
dc.conference.titleThe 24th European Wireless Conference (EW 2018)*
dc.event.typeconference
dc.pres.typepaper
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1775


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem