Mostrar el registro sencillo del ítem

dc.contributor.authorCalvo-Palomino, Roberto 
dc.contributor.authorRicciato, Fabio
dc.contributor.authorRepas, Blaz
dc.contributor.authorGiustiniano, Domenico 
dc.contributor.authorLenders, Vincent
dc.date.accessioned2021-07-13T09:32:58Z
dc.date.available2021-07-13T09:32:58Z
dc.date.issued2018-04-11
dc.identifier.urihttp://hdl.handle.net/20.500.12761/527
dc.description.abstractPrecise Time-of-Arrival (TOA) estimations of aircraft and drone signals are important for a wide set of applications including aircraft/drone tracking, air traffic data verification, or self-localization. Our focus in this work is on TOA estimation methods that can run on low-cost software-defined radio (SDR) receivers, as widely deployed in Mode S / ADS-B crowdsourced sensor networks such as the OpenSky Network. We evaluate experimentally classical TOA estimation methods which are based on a cross-correlation with a reconstructed message template and find that these methods are not optimal for such signals. We propose two alternative methods that provide superior results for real-world Mode S / ADS-B signals captured with low-cost SDR receivers. The best method achieves a standard deviation error of 1.5 ns.
dc.language.isoeng
dc.titleNanosecond-precision Time-of-Arrival Estimation for Aircraft Signals with low-cost SDR Receiversen
dc.typeconference object
dc.conference.date11-13 April 2018
dc.conference.placePorto, Portugal
dc.conference.titleThe 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2018)*
dc.event.typeconference
dc.pres.typepaper
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1768


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem