Show simple item record

dc.contributor.authorCaballero Garcés, Pablo 
dc.contributor.authorBanchs, Albert 
dc.contributor.authorde Veciana, Gustavo 
dc.contributor.authorCosta-Perez, Xavier
dc.contributor.authorAzcorra, Arturo 
dc.date.accessioned2021-07-13T09:31:56Z
dc.date.available2021-07-13T09:31:56Z
dc.date.issued2018-10
dc.identifier.issn1536-1276
dc.identifier.urihttp://hdl.handle.net/20.500.12761/487
dc.description.abstractTechnologies that enable network slicing are expected to be a key component of next generation mobile networks. Their promise lies in enabling tenants (such as mobile operators and/or services) to reap the cost and performance benefits of sharing resources while retaining the ability to customize their own allocations. When employing dynamic sharing mechanisms, tenants may exhibit strategic behavior, optimizing their choices in response to those of other tenants. This paper analyzes dynamic sharing in network slicing when tenants support inelastic users with minimum rate requirements. We propose a NEtwork Slicing (NES) framework combining: 1) admission control; 2) resource allocation; and 3) user dropping. We model the network slicing system with admitted users as a NES game; this is a new class of game where the inelastic nature of the traffic may lead to dropping users whose requirements cannot be met. We show that, as long as admission control guarantees that slices can satisfy the rate requirements of all their users, this game possesses a Nash equilibrium. Admission control policies (a conservative and an aggressive one) are considered, along with a resource allocation scheme and a user dropping algorithm, geared at maintaining the system in Nash equilibria. We analyze our NES framework's performance in equilibrium, showing that it achieves the same or better utility than static resource partitioning, and bound the difference between NES and the socially optimal performance. Simulation results confirm the effectiveness of the proposed approach.
dc.language.isoeng
dc.publisherIEEE
dc.titleNetwork Slicing for Guaranteed Rate Services: Admission Control and Resource Allocation Gamesen
dc.typejournal article
dc.journal.titleIEEE Transactions on Wireless Communications
dc.pres.typedemo
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number17
dc.issue.number10
dc.identifier.doiDOI: 10.1109/TWC.2018.2859918
dc.page.final6432
dc.page.initial6419
dc.subject.keywordWireless networks
dc.subject.keywordnetwork slicing
dc.subject.keywordmulti-tenant networks
dc.subject.keywordresource allocation
dc.subject.keywordguaranteed rate service
dc.subject.keywordinelastic traffic
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1721


Files in this item

This item appears in the following Collection(s)

Show simple item record