Mostrar el registro sencillo del ítem

dc.contributor.authorNordio, Alessandro
dc.contributor.authorTarable, Alberto
dc.contributor.authorLeonardi, Emilio
dc.contributor.authorAjmone Marsan, Marco 
dc.date.accessioned2021-07-13T09:31:00Z
dc.date.available2021-07-13T09:31:00Z
dc.date.issued2018-02-24
dc.identifier.issn2376-3639
dc.identifier.urihttp://hdl.handle.net/20.500.12761/449
dc.description.abstractWe investigate crowdsourcing algorithms for finding the top-quality item within a large collection of objects with unknown intrinsic quality values. This is an important problem with many relevant applications, for example in networked recommendation systems. The core of the algorithms is that objects are distributed to crowd workers, who return a noisy and biased evaluation. All received evaluations are then combined, to identify the top-quality object. We first present a simple probabilistic model for the system under investigation. Then, we devise and study a class of efficient adaptive algorithms to assign in an effective way objects to workers. We compare the performance of several algorithms, which correspond to different choices of the design parameters/metrics. In the simulations we show that some of the algorithms achieve near optimal performance for a suitable setting of the system parameters.
dc.language.isoeng
dc.publisherACM, New York, NY, USA
dc.titleSelecting the top-quality item through crowd scoringen
dc.typejournal article
dc.journal.titleACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS)
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number3
dc.issue.number1
dc.identifier.doihttps://doi.org/10.1145/3157736
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1674


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem