• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Millimetric Diagnosis: Machine Learning Based Network Analysis for mm-Wave Communication

Compartir
Ficheros
Millimetric_Diagnosis_Machine_Learning_Based_Network_Analysis_for_mm-Wave_Communication_2017_EN.pdf (767.8Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/359
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Scalabrin, Maria; Rossi, Michele; Bielsa, Guillermo; Loch, Adrian; Widmer, Joerg
Fecha
2017-06-12
Resumen
Troubleshooting millimeter-wave (mm-wave) wireless networks is complex due to the directionality of the communication. Issues such as deafness, misaligned antennas, or blockage may severely impact network performance, and identifying them is crucial to improve network deployments. To this end, access to lower-layer information is important. However, commercial off-the-shelf mm-wave wireless devices typically do not provide such information. Even if they would, detecting effects such as deafness based on information of a single node that forms part of the network is typically hard. In this paper, we present the design and evaluation of an external sniffing device that can infer the aforementioned performance issues only using narrowband physical layer energy traces. Our sniffer does not need to decode any data, resulting in a simple but effective approach which also preserves privacy and works on encrypted networks. Our key contribution is a machine learning framework which enables automated energy trace analysis while coping with the non-stationarity of the traces. We evaluate its performance in practice using off-the-shelf wireless devices operating in the 60 GHz band. Our results show that the above framework correctly infers physical layer events in virtually all cases, thus providing valuable information to troubleshoot issues in mm-wave networks.
Compartir
Ficheros
Millimetric_Diagnosis_Machine_Learning_Based_Network_Analysis_for_mm-Wave_Communication_2017_EN.pdf (767.8Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/359
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!