• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical Comparison of Power-efficient Virtual Machine Assignment Algorithms

Compartir
Ficheros
main.pdf (2.678Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/268
ISSN: 0140-3664
DOI: 10.1016/j.comcom.2016.05.005
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Arjona Aroca, Jordi; Fernández Anta, Antonio
Fecha
2016-12-15
Resumen
The advent of cloud computing has changed the way many companies do computation, allowing them to outsource it to the cloud. This has given origin to a new kind of business, the cloud providers, which run large datacenters. In order to be competitive, cloud providers must keep their operational costs low. One way to reduce these costs is reducing the energy consumed with smart task assignment algorithms, which decide where tasks are to be placed upon their arrival. Unfortunately, almost no task assignment algorithm used is power aware. In this paper we compare the performance of multiple task assignment algorithms for saving energy. We assume that tasks are in fact virtual machines that have to be assigned to physical machines, and we assume that the physical machines have a power consumption that increases superlinearly with the load. First, we propose two tunable power-aware task assignment algorithms (that subsume the algorithms studied in [15]). These algorithms are then compared with multiple state-of-the-art algorithms in different meaningful scenarios. Both algorithms prove themselves as interesting assignment algorithms since, properly configured, they outperform the other algorithms in most of the cases.
Compartir
Ficheros
main.pdf (2.678Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/268
ISSN: 0140-3664
DOI: 10.1016/j.comcom.2016.05.005
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!