• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of range and bandwidth on the round complexity in the congested clique model

Compartir
Ficheros
COCOON2016_087_final_v1.pdf (166.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/203
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Becker, Florent; Fernández Anta, Antonio; Rapaport, Ivan; Rémila, Eric
Fecha
2016-08-02
Resumen
The congested clique model is a message-passing model of distributed computation where $k$ players communicate with each other over a complete network. Here we consider synchronous protocols in which communication happens in rounds (we allow them to be randomized with public coins). In the \emph{unicast} communication mode, each player $i$ has her own $n$-bit input $x_i$ and may send $k-1$ different $b$-bit messages through each of her $k-1$ communication links in each round. On the other end is the \emph{broadcast} communication mode, where each player can only broadcast a single message over all her links in each round. The goal of this paper is to complete our Brief Announcement at PODC 2015, where we initiated the study of the space that lies between the two extremes. For that purpose, we parametrize the congested clique model by two values: the \emph{range} $r$, which is the maximum number of different messages a player is allowed to send in each round, and the \emph{bandwidth} $b$, which is the maximum size of these messages. We show that the space between the unicast and broadcast congested clique models is very rich and interesting. For instance, we show that the round complexity of the pairwise set-disjointness function $\textsc{pwdisj}$ is completely sensitive to the range $r$. This translates into a $\Omega(k)$ gap between the unicast ($r=k-1$) and the broadcast ($r=1$) modes. Moreover, provided that $r \geq 2$ and $rb/\log r = O(k)$, the round complexity of $\textsc{pwdisj}$ is $\Theta(n/ k \log r )$. On the other hand, we also prove that the behavior of $\textsc{pwdisj}$ is exceptional: almost every boolean function $f$ has maximal round complexity $\Theta(n/b)$. Finally, we prove that $\min \left(\left\lceil \frac{b'}{\lfloor \log r \rfloor} \right\rceil, \left\lceil\frac{r'}{r-1}\right\rceil\left\lceil\frac{b'}{b}\right\rceil\right)$ is an upper bound for the gap between the round complexities with parameters $(b,r)$ and parameters $(b',r')$ of any boolean function.
Compartir
Ficheros
COCOON2016_087_final_v1.pdf (166.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/203
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!