| dc.identifier.citation | M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker, “An analysis of underground forums,” in Proceedings of the 2011 ACM SIGCOMM Internet Measurement Conference, 2011, pp. 71–80. [2] S. Pastrana, D. R. Thomas, A. Hutchings, and R. Clayton, “CrimeBB: Enabling cybercrime research on underground forums at scale,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1845 1854. [3] A. Bermudez-Villalva and G. Stringhini, “The shady economy: Under standing the difference in trading activity from underground forums in different layers of the web,” in Proceedings of the APWG Symposium on Electronic Crime Research (eCrime), 2021, pp. 1–10. [4] S. Pastrana, A. Hutchings, D. Thomas, and J. Tapiador, “Measuring eWhoring,” in Proceedings of the Internet Measurement Conference, 2019, p. 463–477. [Online]. Available: https://doi.org/10.1145/3355369.3355597 [5] G. Atondo Siu, B. Collier, and A. Hutchings, “Follow the money: The relationship between currency exchange and illicit behaviour in an underground forum,” in Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2021, pp. 191–201. [6] M. Mischinger, S. Pastrana, G. Suarez-Tangil et al., “IoC Stalker: Early detection of Indicators of Compromise,” in Proceedings of the Annual Computer Security Applications Conference, 2024. [7] R. Bhalerao, M. Aliapoulios, I. Shumailov, S. Afroz, and D. McCoy, “Mapping the underground: Supervised discovery of cybercrime supply chains,” in Proceedings of the IEEE APWG Symposium on Electronic Crime Research (eCrime), 2019, pp. 1–16. [8] M. Ebrahimi, S. Samtani, Y. Chai, and H. Chen, “Detecting cyber threats in non-English hacker forums: an adversarial cross-lingual knowledge transfer approach,” in Proceedings of the IEEE Security and Privacy Workshops (SPW), 2020, pp. 20–26. [9] J. Hughes, S. Pastrana, A. Hutchings, S. Afroz, S. Samtani, W. Li, and E. Santana Marin, “The art of cybercrime community research,” ACM Computing Surveys, vol. 56, no. 6, pp. 1–26, 2024. [10] J. Ram´ırez S´anchez, A. Campo-Archbold, A. Zapata Rozo, D. D´ıaz L´opez, J. Pastor-Galindo, F. G´omez M´armol, and J. Aponte D´ıaz, “Uncovering cybercrimes in social media through natural language processing,” Complexity, vol. 2021, pp. 1–15, 2021. [11] M. Arazzi, D. R. Arikkat, S. Nicolazzo, A. Nocera, M. Conti et al., “NLP-based techniques for cyber threat intelligence,” arXiv preprint arXiv:2311.08807, 2023. [12] J. Torregrosa, G. Bello-Orgaz, E. Mart´ınez-C´amara, J. D. Ser, and D. Camacho, “A survey on extremism analysis using natural language processing: definitions, literature review, trends and challenges,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 8, pp. 9869–9905, 2023. [13] A. Rocha, W. J. Scheirer, C. W. Forstall, T. Cavalcante, A. Theophilo, B. Shen, A. R. B. Carvalho, and E. Stamatatos, “Authorship attribution for social media forensics,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 1, pp. 5–33, 2017. [14] A. Caines, S. Pastrana, A. Hutchings, and P. J. Buttery, “Automatically identifying the function and intent of posts in underground forums,” Crime Science, vol. 7, no. 1, pp. 1–14, 2018. [15] S. Pastrana, A. Hutchings, A. Caines, and P. Buttery, “Characterizing Eve: Analysing cybercrime actors in a large underground forum,” in Proceedings of the 21st International Symposium on Research in Attacks, Intrusions, and Defenses (RAID), 2018, pp. 207–227. [16] J. Lusthaus, M. Bruce, and N. Phair, “Mapping the geography of cybercrime: A review of indices of digital offending by country,” in 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 2020, pp. 448–453. [17] M. Edwards, G. Suarez-Tangil, C. Peersman, G. Stringhini, A. Rashid, and M. Whitty, “The geography of online dating fraud,” in Workshop on technology and consumer protection. IEEE-TCSP, 2018. [18] V. Valeros, A. ˇ Sirokova, C. Catania, and S. Garcia, “Towards better understanding of cybercrime: The role of fine-tuned LLMs in transla tion,” in Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2024, pp. 91–99. [19] D. Seyler, W. Liu, Y. Zhang, X. Wang, and C. Zhai, “Darkjargon. net: A platform for understanding underground conversation with latent mean ing,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 2526 2530. [20] K. Yuan, H. Lu, X. Liao, and X. Wang, “Reading thieves’ cant: auto matically identifying and understanding dark jargons from cybercrime marketplaces,” in Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), 2018, pp. 1027–1041. [21] Y. Li, J. Cheng, C. Huang, Z. Chen, and W. Niu, “Nedetector: Automat ically extracting cybersecurity neologisms from hacker forums,” Journal of Information Security and Applications, vol. 58, p. 102784, 2021. [22] E. Vanmassenhove, D. Shterionov, and A. Way, “Lost in translation: Loss and decay of linguistic richness in machine translation,” in Proceedings of Machine Translation Summit XVII: Research Track, 2019, pp. 222 232. [23] A. Mukherjee and M. Shrivastava, “Lost in translation? found in evalua tion: A comprehensive survey on sentence-level translation evaluation,” ACM Computing Surveys, 2025. [24] V. Ghafouri, J. Such, and G. Suarez-Tangil, “I love pineapple on pizza!= i hate pineapple on pizza: Stance-aware sentence transformers for opinion mining,” in Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024, pp. 21046–21058. [25] L. Zhou, A. Caines, I. Pete, and A. Hutchings, “Automated hate speech detection and span extraction in underground hacking and extremist forums,” Natural Language Engineering, vol. 29, no. 5, pp. 1247–1274, 2023. [26] R. S. Portnoff, S. Afroz, G. Durrett, J. K. Kummerfeld, T. Berg Kirkpatrick, D. McCoy, K. Levchenko, and V. Paxson, “Tools for automated analysis of cybercriminal markets,” in Proceedings of the 26th International World Wide Web Conference, 2017, pp. 657–666. [27] M. Ebrahimi, Y. Chai, S. Samtani, and H. Chen, “Cross-lingual cyber security analytics in the international dark web with adversarial deep representation learning,” Mis Quarterly, vol. 46, no. 2, 2022. [28] Y. Jin, E. Jang, J. Cui, J. W. Chung, Y. Lee, and S. Shin, “Darkbert: A language model for the dark side of the internet,” in 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023. Association for Computational Linguistics (ACL), 2023, pp. 7515–7533. [29] J. Hughes, Y. T. Chua, and A. Hutchings, “Too much data? opportunities and challenges of large datasets and cybercrime,” in Researching Cyber crimes: Methodologies, Ethics, and Critical Approaches, A. Lavorgna and T. J. Holt, Eds. Springer, 2021, pp. 191–212. [30] L. Han, “Machine translation evaluation resources and methods: A survey,” arXiv preprint arXiv:1605.04515, 2016. [31] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675, 2019. [32] J. Vamvas and R. Sennrich, “NMTScore: A multilingual analysis of translation-based text similarity measures,” in Findings of the Associa tion for Computational Linguistics: EMNLP, 2022, pp. 198–213. [33] M. Hanna and O. Bojar, “A fine-grained analysis of BERTScore,” in Proceedings of the Sixth Conference on Machine Translation, 2021, pp. 507–517. [34] T. Kocmi and C. Federmann, “Large language models are state-of-the art evaluators of translation quality,” arXiv preprint arXiv:2302.14520, 2023. [35] ——, “GEMBA-MQM: Detecting translation quality error spans with GPT-4,” arXiv preprint arXiv:2310.13988, 2023. [36] Hugging Face, “all-mpnet-base-v2,” https://huggingface.co/sentence transformers/all-mpnet-base-v2, 07 2022. [37] S. Samtani, K. Chinn, C. Larson, and H. Chen, “Azsecure hacker assets portal: Cyber threat intelligence and malware analysis,” in 2016 IEEE conference on intelligence and security informatics (ISI). Ieee, 2016, pp. 19–24. [38] J. Caballero, G. Gomez, S. Matic, G. S´anchez, S. Sebasti´an, and A. Villaca˜nas, “The rise of GoodFATR: A novel accuracy comparison methodology for indicator extraction tools,” Future Generation Com puter Systems, vol. 144, pp. 74–89, 2023. [39] Virustotal, “Virustotal,” https://www.virustotal.com/gui/home/upload, [Online] Last accessed: April, 30 2025. [40] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023. [41] J. R. Jolley and L. Maimone, “Thirty years of machine translation in language teaching and learning: A review of the literature,” L2 Journal: An Electronic Refereed Journal for Foreign and Second Language Educators, vol. 14, no. 1, 2022. [42] Y. A. Telaumbanua, A. Marpaung, C. P. D. Gulo, D. K. W. Waruwu, E. Zalukhu, and N. P. Zai, “Analysis of two translation applications: Why is DeepL translate more accurate than Google Translate?” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 4, no. 1, pp. 82–86, 2024. [43] D. S. Chaplot, “Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford, devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample, lucile saulnier, l´elio re nard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril, thomas wang, timoth´ee lacroix, william el sayed,” arXiv preprint arXiv:2310.06825, 2023. [44] A. K. Wassie, M. Molaei, and Y. Moslem, “Domain-specific translation with open-source large language models: Resource-oriented analysis,” arXiv preprint arXiv:2412.05862, 2024. [45] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A Python natural language processing toolkit for many human languages,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020. [46] H. Saadany and C. Oraˇsan, “BLEU, METEOR, BERTScore: Evalu ation of metrics performance in assessing critical translation errors in sentiment-oriented text,” in Proceedings of the Translation and Interpreting Technology Online Conference, 2021, pp. 48–56. [47] C. M. Hidalgo-Ternero, “Google Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological variation.” Universitat d’Alacant, 2020. [48] L. Matviienko, L. Khomenko, I. Denysovets, K. Horodenska, T. Niko lashyna, and I. Pavlova, “Comparative analysis of online translators in the machine translation system,” Revista Romaneasca pentru Educatie Multidimensionala, vol. 16, no. 3, pp. 101–118, 2024. [49] K. Huang, D. W. E. B. C. GrierD, T. J. Holt, C. Kruegel, D. McCoy, S. Savage, and G. Vigna, “Framing dependencies introduced by under ground commoditization,” in Workshop on the Economics of Information Security, 2015. [50] W. Jiao, W. Wang, J.-t. Huang, X. Wang, S. Shi, and Z. Tu, “Is ChatGPT a good translator? Yes with GPT-4 as the engine,” arXiv preprint arXiv:2301.08745, 2023. [51] W. Zhu, H. Liu, Q. Dong, J. Xu, S. Huang, L. Kong, J. Chen, and L. Li, “Multilingual machine translation with large language models: Empirical results and analysis,” in Findings of the Association for Computational Linguistics: NAACL 2024, 2024, pp. 2765–2781. [52] A. Hendy, M. Abdelrehim, A. Sharaf, V. Raunak, M. Gabr, H. Mat sushita, Y. J. Kim, M. Afify, and H. H. Awadalla, “How good are gpt models at machine translation? a comprehensive evaluation,” arXiv preprint arXiv:2302.09210, 2023. [53] D. Elshin, N. Karpachev, B. Gruzdev, I. Golovanov, G. Ivanov, A. Antonov, N. Skachkov, E. Latypova, V. Layner, E. Enikeeva et al., “From general LLM to translation: How we dramatically improve translation quality using human evaluation data for LLM finetuning,” in Proceedings of the Ninth Conference on Machine Translation, 2024, pp. 247–252. [54] I. Rivera-Trigueros, “Machine translation systems and quality assess ment: a systematic review,” Language Resources and Evaluation, vol. 56, no. 2, pp. 593–619, 2022. [55] T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics for text generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 7881–7892. [56] R. Rei, C. Stewart, A. C. Farinha, and A. Lavie, “COMET: A neural framework for MT evaluation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 2685–2702. [57] J. Burroughs, M. Tereszkowski-Kaminski, and G. Suarez-Tangil, “Visu alizing cyber-threats in underground forums,” in Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2023, pp. 244–258. | es |