• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A First Look at Operational RAN Updates and Their Impact on Carrier Traffic Demands and Prediction

Compartir
Ficheros
Antenna_Evolution_dspace.pdf (3.692Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2006
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Boiano, Antonio; Chukhno, Nadezhda; Smoreda, Zbigniew; Redondi, Alessandro Enrico Cesare; Fiore, Marco
Fecha
2026-05
Resumen
Radio Access Networks (RANs) are critical infrastructures that mobile operators continuously upgrade to accommodate increasing data traffic demands, stricter performance requirements, and evolutions in radio technologies. RAN updates can affect carrier-level Key Performance Indicators (KPIs) that are the foundational input to data-driven models for network management. However, to date, no study has systematically examined the dynamics of RAN deployments, and little is known about the actual prevalence of RAN updates or their impact on Machine Learning (ML) models for network automation. This paper presents a first characterization of RAN updates in a nationwide operational infrastructure composed of over 500,000 carriers. A network-side vantage point lets us (i) investigate the type and frequency of RAN modifications, (ii) assess the impact of such changes on a primary KPI for network management, i.e., the traffic volume served by individual carriers, and (iii) verify the final effects on a classical downstream ML application, i.e., traffic prediction. Our results reveal that RAN updates take place with notable frequency, e.g., occurring every few days even in medium-sized cities. Also, they affect in a significant way the demands at a considerable fraction of pre-existing carriers, where they can curb the accuracy of ML traffic forecasting models.
Compartir
Ficheros
Antenna_Evolution_dspace.pdf (3.692Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/2006
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!