Mostrar el registro sencillo del ítem

dc.contributor.authorSoundrarajan, Rahul
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorPolese, Michele
dc.contributor.authorD'Oro, Salvatore
dc.contributor.authorBonati, Leonardo
dc.contributor.authorMelodia, Tommaso
dc.date.accessioned2025-11-11T16:08:07Z
dc.date.available2025-11-11T16:08:07Z
dc.date.issued2025-10
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1990
dc.description.abstractOpen RAN introduces a flexible, cloud-based architecture for the Radio Access Network (RAN), enabling Artificial Intelligence (AI)/Machine Learning (ML)-driven automation across heterogeneous, multi-vendor deploy- ments. While EXplainable Artificial Intelligence (XAI) helps mitigate the opacity of AI models, explainability alone does not guarantee reliable network operations. In this article, we propose a lightweight verification approach based on interpretable models to validate the behavior of Deep Reinforcement Learning (DRL) agents for RAN slicing and scheduling in Open RAN. Specifically, we use Decision Tree (DT)-based verifiers to perform near- real-time consistency checks at runtime, which would be otherwise unfeasible with computationally expensive state- of-the-art verifiers. We analyze the landscape of XAI and AI verification, propose a scalable architectural integration, and demonstrate feasibility with a DT-based slice-verifier. We also outline future challenges to ensure trustworthy AI adoption in Open RAN.es
dc.language.isoenges
dc.titleOn AI Verification in Open RANes
dc.typemagazinees
dc.journal.titleIEEE Communications Magazinees
dc.rights.accessRightsopen accesses
dc.relation.projectNamebRAIN: explainable and Robust AI for integration in next generation Networked systemses
dc.relation.projectNameRamón y Cajal - Claudioes
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem