• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pontus: A Memory-Efficient and High-Accuracy Approach for Persistence-Based Item Lookup in High-Velocity Data Streams

Compartir
Ficheros
Pontus_ACM_Web_Conference_25.pdf (2.863Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1986
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Li, Weihe; Li, Zukai; Bütün, Beyza; Diallo, Alec F.; Fiore, Marco; Patras, Paul
Fecha
2025-04-22
Resumen
In today's web-scale, data-driven environments, real-time detection of persistent items that consistently recur over time is essential for maintaining system integrity, reliability, and security. Persistent items often signal critical anomalies, such as stealthy DDoS and botnet attacks in web infrastructures. Although various methods exist for identifying such items as well as for determining their frequency, they require recording every item for processing, which is impractical at very high data rates achieved by modern data streams. In this paper, we introduce Pontus, a novel approach that uses an approximate data structure (sketch) specifically designed for the efficient and accurate detection of persistent items. Our method not only achieves fast and precise lookup but is also flexible, allowing for minor modifications to accommodate other types of persistence-based item detection tasks, such as detecting persistent items with low frequency. We rigorously validate our approach through formal methods, offering detailed proofs of time/space complexity and error bounds to demonstrate its theoretical soundness. Our extensive trace-driven evaluations across various persistence-based tasks further demonstrate Pontus's effectiveness in significantly improving detection accuracy and enhancing processing speed compared to existing approaches. We implement Pontus in an experimental platform with industry-grade Intel Tofino switches and demonstrate the practical feasibility of our approach in a real-world memory-constrained environment.
Compartir
Ficheros
Pontus_ACM_Web_Conference_25.pdf (2.863Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1986
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!