Mostrar el registro sencillo del ítem

dc.contributor.authorBakirtzis, Stefanos
dc.contributor.authorÇağkan, Yapar
dc.contributor.authorFiore, Marco 
dc.contributor.authorZhang, Jie
dc.contributor.authorWassell, Ian
dc.date.accessioned2025-10-17T16:07:50Z
dc.date.available2025-10-17T16:07:50Z
dc.date.issued2025-08
dc.identifier.issn1558-0687es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1984
dc.description.abstractThe efficient deployment and operation of any wire- less communication ecosystem rely on knowledge of the received signal quality over the target coverage area. This knowledge is typically acquired through radio propagation solvers, which however suffer from intrinsic and well-known performance limitations. This article provides a primer on how integrating deep learning and conventional propagation modeling techniques can enhance multiple vital facets of wireless network operation, and yield benefits in terms of efficiency and reliability. By highlighting the pivotal role that deep learning-based radio propagation models will assume in next-generation wireless networks, we aspire to propel further research in this direction and foster their adoption in additional applications.es
dc.language.isoenges
dc.publisherIEEEes
dc.titleEmpowering Wireless Network Applications with Deep Learning-based Radio Propagation Modelses
dc.typejournal articlees
dc.journal.titleIEEE Wireless Communications Magazinees
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.volume.number32es
dc.issue.number4es
dc.identifier.doi10.1109/MWC.012.2400336es
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem