• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bibliometric Literature Review of Integrated Data and Model Based Diagnosis Approaches for the Industry 4.0

Compartir
Ficheros
HAMADI_paper.pdf (1.094Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1976
ISSN: 0020-7721
DOI: 10.1080/00207721.2025.2550562
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Enciso-Salas, Luis; Perez-Zuniga, Gustavo; Sotomayor-Moriano, Javier; Chanthery, Elodie; Sepulveda-Oviedo, Edgar Hernando; Subias, Audine; Trave- Massuyes, Louise; Garcia, Rodrigo; Aguilar, Jose
Fecha
2025-09-01
Resumen
The ubiquity of Cyber-Physical Systems and the Internet of Things has created a data-based environment that has allowed a significant number of applications linked to the "Industry 4.0" paradigm for the manufacturing industry. In this field, Artificial Intelligence is playing an important role for the development of automatic diagnostic tasks. This work carries out a review of the literature on the latest advances in Industry 4.0 around automatic diagnosis based on two specific objectives: (i) Determine the possible combinations between Data Based Diagnosis and Model Based Diagnosis, and (ii) Identify the hybridization opportunities and existing frameworks to integrate machine learning approaches to reuse solutions/algorithms for Industry 4.0 problems. The bibliometric review of the literature was guided by a simplified version of the PRISMA 2020 standard. Some of the main results of the review are that most of the combination schemes use observer-based approaches as the residuals generators. On the other hand, the largest number of machine learning applications for Industry 4.0 have been for smart manufacturing, focusing on failure management. As for the most used techniques, there are those of deep learning and ensemble methods.
Compartir
Ficheros
HAMADI_paper.pdf (1.094Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1976
ISSN: 0020-7721
DOI: 10.1080/00207721.2025.2550562
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!