• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multistage Training of Fuzzy Cognitive Maps to Predict Preeclampsia and Fetal Growth Restriction

Compartir
Ficheros
multi_training_fcm_revised-3.pdf (2.073Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1975
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2025.3595758.
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Hoyos, William; García, Rodrigo; Aguilar, Jose
Fecha
2025-08-01
Resumen
Preeclampsia (PE) and fetal growth restriction (FGR) are pregancy complications related to placental dysfunction that pose significant challenges in terms of morbidity and mortality worldwide. Addressing these challenges involves early identification of the disease, which could reduce both the burden on healthcare systems and associated morbidity rates. In this study, we propose an innovative strategy using multistage training of fuzzy cognitive maps (FCM) to predict specific pregnancy disorders such as PE and FGR. The objective was to develop a predictive approach as a result of multistage training to simulate disease progression in a human individual. The models were rigorously evaluated for their predictive ability using datasets containing characteristics related to the mother, fetus, signs, symptoms, Doppler studies, and laboratory tests. The results conclusively reveal that multistage training better uncovers patterns in the data, leading to significantly improved predictive performance for these disorders. Convergence analysis demonstrated the stability of the FCM generated during the training stages. Also, the comparison with other machine learning models demonstrates that our approach is competitive to predict PE and FGR. The application of these models in healthcare settings holds promise as a valuable tool for the early detection of PE and FGR, contributing to the reduction of morbidity and mortality rates.
Compartir
Ficheros
multi_training_fcm_revised-3.pdf (2.073Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1975
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2025.3595758.
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!