• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Receiving Kernel-Level Insights via eBPF: Can ABR Algorithms Adapt Smarter?

Compartir
Ficheros
Receiving_Kernel-Level_Insights_via_eBPF_Can_ABR_Algorithms_Adapt_Smarter_WueWoWAS_2025.pdf (740.9Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1963
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Ghasemi, Mohsen; Lorenzi, Daniele; Dolati, Mahdi; Tashtarian, Farzad; Gorinsky, Sergey; Timmerer, Christian
Fecha
2025-10-07
Resumen
The rapid rise of video streaming services such as Netflix and YouTube has made video delivery the largest driver of global Internet traffic including mobile networks such as 5G or the upcoming 6G network. To maintain playback quality, client devices employ Adaptive Bitrate (ABR) algorithms that adjust video quality based on metrics like available bandwidth and buffer occupancy. However, these algorithms often react slowly to sudden bandwidth fluctuations due to limited visibility into network conditions, leading to stall events that significantly degrade the user's Quality of Experience (QoE). In this work, we introduce CaBR, a Congestion-aware adaptive BitRate decision module designed to operate on top of existing ABR algorithms. CaBR enhances video streaming performance by leveraging real-time, in-kernel network telemetry collected via the extended Berkeley Packet Filter (eBPF). By utilizing congestion metrics such as queue lengths observed at network switches, CaBR refines the bitrate selection of the underlying ABR algorithms for upcoming segments, enabling faster adaptation to changing network conditions. Our evaluation shows that CaBR significantly reduces the playback stalls and improves QoE by up to 25% compared to state-of-the-art approaches in a congested environment.
Compartir
Ficheros
Receiving_Kernel-Level_Insights_via_eBPF_Can_ABR_Algorithms_Adapt_Smarter_WueWoWAS_2025.pdf (740.9Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1963
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!