Mostrar el registro sencillo del ítem

dc.contributor.authorTalavante, Javier 
dc.contributor.authorGenovés Guzmán, Borja 
dc.contributor.authorGiustiniano, Domenico 
dc.date.accessioned2025-09-04T15:53:28Z
dc.date.available2025-09-04T15:53:28Z
dc.date.issued2025
dc.identifier.citation[1] S. Ahmed et al., “The Internet of Batteryless Things,” Commun. ACM, vol. 67, no. 3, p. 64–73, Feb. 2024. [2] Ismayana, D. R. Utomo, and P. Nugroho, “A comparative study of tran- simpedance amplifier (TIA) topologies for visible light communication (VLC)-based Internet of Things (IoT) data communication,” in Proc. 10th IEEE Inf. Technol. Int. Seminar (ITIS), Nov. 2024, pp. 344–350. [3] T. Khan, S. N. K. Veedu, A. R´acz, M. Afshang, A. Hoglund, and J. Bergman, “Toward 6G zero-energy internet of things: Standards, trends, and recent results,” IEEE Commun. Mag., vol. 62, no. 12, pp. 82–88, Sept. 2024. [4] Y.-L. Huang, “Nonlinear saturation behaviors of high-speed p-i-n pho- todetectors,” J. Lightwave Technol., vol. 18, no. 2, pp. 203–212, Feb. 2000. [5] O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, “Internet of hybrid energy harvesting things,” IEEE Internet Things J., vol. 5, no. 2, pp. 736–746, 2018. [6] M. S. Mir, B. G. Guzman, A. Varshney, and D. Giustiniano, “LiFi for low-power and long-range RF backscatter,” IEEE/ACM Trans. Netw., vol. 32, no. 3, pp. 2237–2252, June 2024. [7] V. K. Papanikolaou et al., “Simultaneous lightwave information and power transfer in 6G networks,” IEEE Commun. Mag., vol. 62, no. 3, pp. 16–22, Mar. 2024. [8] B. Clerckx and E. Bayguzina, “Waveform design for wireless power transfer,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6313–6328, Dec. 2016. [9] A. Galisteo, A. Varshney, and D. Giustiniano, “Two to tango: hybrid light and backscatter networks for next billion devices,” in Proc. 18th ACM Int. Conf. Mobile Syst. Appl. Services (MobiSys), June 2020, p. 80–93. [10] O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, “Internet of hybrid energy harvesting things,” IEEE Internet Things J., vol. 5, no. 2, pp. 736–746, Apr. 2018. [11] J. Liu, G. Faulkner, B. Choubey, S. Collins, and D. C. O’Brien, “An optical transceiver powered by on-chip solar cells for IoT smart dusts with optical wireless communications,” IEEE Internet Things J., vol. 6, no. 2, pp. 3248–3256, Nov. 2019. [12] L. De Groot, T. Xu, and M. Z. Zamalloa, “DroneVLC: Exploiting drones and VLC to gather data from batteryless sensors,” in Proc. 2023 IEEE Int. Conf. on Pervasive Comput. and Commun. (PerCom), Mar. 2023, pp. 242–251. [13] A. Perera, M. Katz, R. Godaliyadda, J. H¨akkinen, and E. Str¨ommer, “Light-based internet of things: Implementation of an optically con- nected energy-autonomous node,” in Proc. 2021 IEEE Wireless Com- mun. and Netw. Conf. (WCNC), Mar. 2021, pp. 1–7. [14] K. Xu, Z. Shen, Y. Wang, X. Xia, and D. Zhang, “Hybrid time-switching and power splitting SWIPT for full-duplex massive MIMO systems: A beam-domain approach,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7257–7274, 2018. [15] S. Das, A. Sparks, E. Poves, S. Videv, J. Fakidis, and H. Haas, “Effect of sunlight on photovoltaics as optical wireless communication receivers,” J. Lightw. Technol., vol. 39, no. 19, pp. 6182–6190, Oct. 2021. [16] I. Tavakkolnia et al., “Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications,” Light: Sci. & Appl., vol. 10, no. 41, p. 41, Feb. 2021. [17] Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar- panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, Aug. 2015. [18] A. M. Abdelhady, O. Amin, A. Chaaban, B. Shihada, and M.-S. Alouini, “Downlink resource allocation for dynamic TDMA-based VLC systems,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 108–120, Oct. 2018. [19] K. W. S. Palitharathna, N. D. Wickramasinghe, A. M. Vegni, and H. A. Suraweera, “Neural network-based optimization for slipt-enabled indoor vlc systems with energy constraints,” IEEE Trans. Green Commun. Netw., vol. 8, no. 2, pp. 839–851, 2024. [20] Y. Guo, K. Xiong, Y. Lu, B. Gao, P. Fan, and K. B. Letaief, “SLIPT- enabled multi-LED MU-MISO VLC networks: Joint beamforming and DC bias optimization,” IEEE Trans. Green Commun. Netw., vol. 7, no. 3, pp. 1104–1120, Oct. 2022. [21] Y. Guo, J. Fan, R. Zhang, B. Chang, D. W. K. Ng, D. Niyato, and D. I. Kim, “Secrecy Energy Efficiency Maximization in IRS-Assisted VLC MISO Networks with RSMA: A DS-PPO Approach,” IEEE Trans. Wirel. Commun., pp. 1–1, 2025. [22] Y. Guo, K. Xiong, Y. Lu, D. Wang, P. Fan, and K. B. Letaief, “Achievable information rate in hybrid VLC-RF networks with lighting energy harvesting,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6852–6864, Oct. 2021. [23] S. Shi, G. Gui, Y. Lin, C. Yuen, O. A. Dobre, and F. Adachi, “Joint beamformer design and power allocation method for hybrid RF-VLCP system,” IEEE Internet Things J., vol. 11, no. 5, pp. 7878–7892, Sept. 2024. [24] T. Tang, L. Shi, Q. Li, and Z. Xiong, “Sustainability-driven resource allocation for SLIPT-assisted hybrid VLC/RF IoT systems,” IEEE Wireless Commun. Lett., vol. 13, no. 6, pp. 1765–1769, Apr. 2024. [25] H. Peng, Q. Li, A. Pandharipande, X. Ge, and J. Zhang, “End-to-end performance optimization of a dual-hop hybrid VLC/RF IoT system based on SLIPT,” IEEE Internet Things J., vol. 8, no. 24, pp. 17 356– 17 371, May 2021. [26] A. H. F. Raouf, C. K. Anjinappa, and I. Guvenc, “Optimizing energy- harvesting hybrid VLC/RF networks with random receiver orientation,” IEEE Access, vol. 12, pp. 147 574–147 588, Oct. 2024. [27] B. G. Guzman, M. S. Mir, D. F. Fonseca, A. Galisteo, Q. Wang, and D. Giustiniano, “Prototyping visible light communication for the Internet of Things using OpenVLC,” IEEE Commun. Mag., vol. 61, no. 5, pp. 122–128, May 2023. [28] J. Li, A. Liu, G. Shen, L. Li, C. Sun, and F. Zhao, “Retro-VLC: Enabling battery-free duplex visible light communication for mobile and IoT applications,” in Proc. 16th Int. Workshop on Mobile Comput. Syst. and Appl. (HotMobile), Feb. 2015, p. 21–26. [29] X. Xu et al., “PassiveVLC: Enabling practical visible light backscatter communication for battery-free IoT applications,” in Proc. 23rd Annu. Int. Conf. on Mobile Comput. and Netw. (MobiCom), Oct. 2017, p. 180–192. [30] M. S. Mir, B. G. Guzman, A. Varshney, and D. Giustiniano, “Pas- siveLiFi: Rethinking LiFi for low-power and long range RF backscatter,” in Proc. 23rd Annu. Int. Conf. on Mobile Comput. and Netw. (MobiCom), Oct. 2021, p. 697–709. [31] M. Kong et al., “Toward self-powered and reliable visible light com- munication using amorphous silicon thin-film solar cells,” Opt. Express, vol. 27, no. 24, pp. 34 542–34 551, Nov 2019. [32] W. Lei, Z. Chen, Y. Xu, C. Jiang, J. Lin, and J. Fang, “Negatively biased solar cell optical receiver for underwater wireless optical communication system with low peak average power ratio,” IEEE Photon. J., vol. 14, pp. 1–9, Aug. 2022. [33] W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse- biased solar panel optical receiver for simultaneous visible light com- munication and energy harvesting,” Opt. Express, vol. 24, no. 22, pp. A1300–A1305, Oct. 2016. [34] Y. Zhou, A. Ibrahim, M. Muttillo, P. Manganiello, H. Ziar, and O. Is- abella, “Bandwidth characterization of c-Si solar cells as VLC receiver under colored LEDs,” in Proc. 8th Int. Conf. Smart and Sustain. Technolo. (SpliTech), Aug. 2023, pp. 1–5. [35] M. Neukom, S. Z¨ufle, S. Jenatsch, and B. Ruhstaller, “Opto-electronic characterization of third-generation solar cells,” Sci. and Technol. of Advanced Mater., vol. 19, no. 1, pp. 291–316, Mar. 2018. [36] M. Hejri and H. Mokhtari, “On the comprehensive parametrization of the photovoltaic (PV) cells and modules,” IEEE J. Photovolt., vol. 7, no. 1, pp. 250–258, Jan. 2017. [37] J. Nelson, The Physics of Solar Cells. Imperial College Press, 2003. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XXXX 2025 14 [38] S. Pindado et al., “Simplified Lambert W-function math equations when applied to photovoltaic systems modeling,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1779–1788, Jan. 2021. [39] M. de Brito, L. Sampaio, L. Galotto, G. Melo, and C. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Trans. Ind. Electron., vol. 60, pp. 1156–1167, Mar. 2013. [40] M. Hlaili and H. Mechergui, “Comparison of different MPPT algorithms with a proposed one using a power estimator for grid connected PV systems,” Int. J. of Photoenergy, vol. 2016, pp. 1 728 398–1 728 408, Jun. 2016. [41] OSI Optoelectronics, “Photodiode characteristics and applications,” Tech. Rep., 2007. [42] R. Saffari, M. Dolatshahi, and S. Zohoori, “A fully-integrated, low-power transimpedance amplifier for 5Gbps optical front-end,” in Proc. 28th Iranian Conf. on Elect. Eng. (ICEE), 2020, pp. 1–5. [43] Y. Takahashi, D. Ito, M. Nakamura, A. Tsuchiya, T. Inoue, and K. Kishine, “Low-power regulated cascode cmos transimpedance am- plifier with local feedback circuit,” Electronics, vol. 11, no. 6, Mar. 2022. [44] M. T. I. Badal, M. B. I. Reaz, L. S. Yeng, M. A. S. Bhuiyan, and F. Haque, “Advancement of CMOS transimpedance amplifier for optical receiver,” Trans. Electr. and Electron. Mater., vol. 20, no. 2, pp. 73–84, Apr. 2019. [45] J. Fakidis, H. Helmers, and H. Haas, “Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link,” IEEE Photon. Technol. Lett., vol. 32, no. 19, pp. 1277–1280, Aug. 2020. [46] A. A. Goje et al., “Review of flexible perovskite solar cells for indoor and outdoor applications,” Mater. for Renewable and Sustain. Energy, vol. 13, no. 1, pp. 155–179, Apr. 2024. [47] M. C. Scharber, “Efficiency of emerging photovoltaic devices under indoor conditions,” Solar RRL, vol. 8, no. 2, p. 2300811, Nov. 2024. [48] ANYSOLAR Ltd., “SM111K04L. https://www.anysolar.biz/Gen2,” Ac- cessed: 02-04-2025. [49] “ISO 8995:2002 Lighting of indoor work places,” International Organi- zation for Standardization, Geneva, CH, Standard, Mar. 2002. [50] B. G. Guzman et al., “Toward sustainable greenhouses using battery-free LiFi-enabled Internet of Things,” IEEE Commun. Mag., vol. 61, no. 5, pp. 129–135, May 2023. [51] S. Das, “Photovoltaics as high-speed optical wireless communication receiver,” PhD thesis, University of Edinburgh, Edinburgh, UK, Sep. 2021. [52] N. Kondrath and M. K. Kazimierczuk, “Bandwidth of current trans- formers,” IEEE Trans. Instr. Meas., vol. 58, no. 6, pp. 2008–2016, Jul. 2009. [53] e-peas Semiconductors., “AEM10330. https://e-peas.com/documents /AEM10330/DS-AEM10330.pdf,” Accessed: 02-04-2025. [54] STMicroelectronics., “Comparator TS881. https://www.st.com/ re- source/en/datasheet/ts881.pdf,” Accessed: 02-04-2025. [55] Maxim Integrated Products., “Low-Voltage, Phase-Reversal Ana- log Switch MAX4528. https://www.analog.com/media/en/technical- documentation/data-sheets/MAX4528.pdf,” Accessed: 02-04-2025. [56] NXP Semiconductors, “Kinetis KL03 32 KB Flash. https://www.nxp. com/docs/en/data-sheet/KL03P24M48SF0.pdf,” Accessed: 02-04-2025. [57] Hammond., “Miniature Audio Potted 101 Series. https://www.hammfg. com/electronics/transformers/audio/101.pdf,” Accessed: 02-04-2025. [58] K. E. Jeon et al., “LuXSensing beacon: Batteryless IoT sensor, design methodology, and field test for sustainable greenhouse monitoring,” IEEE Trans. AgriFood Electron., vol. 1, no. 2, pp. 86–98, Aug. 2023. [59] I. Cappelli et al., “Autonomous IoT monitoring matching spectral artificial light manipulation for horticulture,” Sensors, vol. 22, no. 11, Apr. 2022. [60] S. Mosavat, M. Zella, M. Handte, A. J. Golkowski, and P. J. Marr´on, “Experience: Aristotle: wake-up receiver-based, star topology batteryless sensor network,” in Proc. 22nd ACM/IEEE Int. Conf. Inf. Process. in Sensor Netw. (IPSN), May 2023, p. 177–190. [61] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1959
dc.description.abstractSolar cells have shown promising performance for Simultaneous Lightwave Information and Power Transfer (SLIPT). Most of literature has focused on applying this concept to battery-powered high-data rate communication. Nevertheless, its application is also particularly advantageous in the low-data rate regime for battery-free systems. However, we find that using the same solar cell causes both communication and harvesting performances degradation. This problem is particularly critical in battery-free systems for its size and power constraints. This paper reveals that the reason behind this problem is that solar cells are typically operated at their Maximum Power Point (MPP), which optimizes energy harvesting but is inefficient for communication. In order to address this finding we introduce, for the first time, the Maximum Communication Point (MCP), a new operating point that complements the traditional MPP by optimizing communication performance. We then propose a transformer-based SLIPT design that enables an accurate control of the impedance at the solar cell's output and thereby allowing precise selection of its operating point. Extensive experiments show that our system provides communication gains of 5x in peak-to-peak received voltage when operating at the MCP, and harvested power gains of more than 3x when operating at the MPP, with respect to the best performing state-of-the-art design.es
dc.description.sponsorshipEuropean Commissiones
dc.description.sponsorshipComunidad de Madrides
dc.language.isoenges
dc.publisherIEEEes
dc.titleSolar cell operating point for joint LiFi communication and harvesting in battery-free deviceses
dc.typejournal articlees
dc.journal.titleIEEE Transactions on Communicationses
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101016411es
dc.relation.projectNameSOMIRO (Soft milli-robots)es
dc.subject.keywordBattery-freees
dc.subject.keywordenergy harvestinges
dc.subject.keywordInternet of Things (IoT)es
dc.subject.keywordLight-Fidelity (LiFi)es
dc.subject.keywordSimultaneous Lightwave Information and Power Transfer (SLIPT)es
dc.subject.keywordsolar celles
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem