dc.identifier.citation | [1] S. Ahmed et al., “The Internet of Batteryless Things,” Commun. ACM, vol. 67, no. 3, p. 64–73, Feb. 2024. [2] Ismayana, D. R. Utomo, and P. Nugroho, “A comparative study of tran- simpedance amplifier (TIA) topologies for visible light communication (VLC)-based Internet of Things (IoT) data communication,” in Proc. 10th IEEE Inf. Technol. Int. Seminar (ITIS), Nov. 2024, pp. 344–350. [3] T. Khan, S. N. K. Veedu, A. R´acz, M. Afshang, A. Hoglund, and J. Bergman, “Toward 6G zero-energy internet of things: Standards, trends, and recent results,” IEEE Commun. Mag., vol. 62, no. 12, pp. 82–88, Sept. 2024. [4] Y.-L. Huang, “Nonlinear saturation behaviors of high-speed p-i-n pho- todetectors,” J. Lightwave Technol., vol. 18, no. 2, pp. 203–212, Feb. 2000. [5] O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, “Internet of hybrid energy harvesting things,” IEEE Internet Things J., vol. 5, no. 2, pp. 736–746, 2018. [6] M. S. Mir, B. G. Guzman, A. Varshney, and D. Giustiniano, “LiFi for low-power and long-range RF backscatter,” IEEE/ACM Trans. Netw., vol. 32, no. 3, pp. 2237–2252, June 2024. [7] V. K. Papanikolaou et al., “Simultaneous lightwave information and power transfer in 6G networks,” IEEE Commun. Mag., vol. 62, no. 3, pp. 16–22, Mar. 2024. [8] B. Clerckx and E. Bayguzina, “Waveform design for wireless power transfer,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6313–6328, Dec. 2016. [9] A. Galisteo, A. Varshney, and D. Giustiniano, “Two to tango: hybrid light and backscatter networks for next billion devices,” in Proc. 18th ACM Int. Conf. Mobile Syst. Appl. Services (MobiSys), June 2020, p. 80–93. [10] O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, “Internet of hybrid energy harvesting things,” IEEE Internet Things J., vol. 5, no. 2, pp. 736–746, Apr. 2018. [11] J. Liu, G. Faulkner, B. Choubey, S. Collins, and D. C. O’Brien, “An optical transceiver powered by on-chip solar cells for IoT smart dusts with optical wireless communications,” IEEE Internet Things J., vol. 6, no. 2, pp. 3248–3256, Nov. 2019. [12] L. De Groot, T. Xu, and M. Z. Zamalloa, “DroneVLC: Exploiting drones and VLC to gather data from batteryless sensors,” in Proc. 2023 IEEE Int. Conf. on Pervasive Comput. and Commun. (PerCom), Mar. 2023, pp. 242–251. [13] A. Perera, M. Katz, R. Godaliyadda, J. H¨akkinen, and E. Str¨ommer, “Light-based internet of things: Implementation of an optically con- nected energy-autonomous node,” in Proc. 2021 IEEE Wireless Com- mun. and Netw. Conf. (WCNC), Mar. 2021, pp. 1–7. [14] K. Xu, Z. Shen, Y. Wang, X. Xia, and D. Zhang, “Hybrid time-switching and power splitting SWIPT for full-duplex massive MIMO systems: A beam-domain approach,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7257–7274, 2018. [15] S. Das, A. Sparks, E. Poves, S. Videv, J. Fakidis, and H. Haas, “Effect of sunlight on photovoltaics as optical wireless communication receivers,” J. Lightw. Technol., vol. 39, no. 19, pp. 6182–6190, Oct. 2021. [16] I. Tavakkolnia et al., “Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications,” Light: Sci. & Appl., vol. 10, no. 41, p. 41, Feb. 2021. [17] Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar- panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, Aug. 2015. [18] A. M. Abdelhady, O. Amin, A. Chaaban, B. Shihada, and M.-S. Alouini, “Downlink resource allocation for dynamic TDMA-based VLC systems,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 108–120, Oct. 2018. [19] K. W. S. Palitharathna, N. D. Wickramasinghe, A. M. Vegni, and H. A. Suraweera, “Neural network-based optimization for slipt-enabled indoor vlc systems with energy constraints,” IEEE Trans. Green Commun. Netw., vol. 8, no. 2, pp. 839–851, 2024. [20] Y. Guo, K. Xiong, Y. Lu, B. Gao, P. Fan, and K. B. Letaief, “SLIPT- enabled multi-LED MU-MISO VLC networks: Joint beamforming and DC bias optimization,” IEEE Trans. Green Commun. Netw., vol. 7, no. 3, pp. 1104–1120, Oct. 2022. [21] Y. Guo, J. Fan, R. Zhang, B. Chang, D. W. K. Ng, D. Niyato, and D. I. Kim, “Secrecy Energy Efficiency Maximization in IRS-Assisted VLC MISO Networks with RSMA: A DS-PPO Approach,” IEEE Trans. Wirel. Commun., pp. 1–1, 2025. [22] Y. Guo, K. Xiong, Y. Lu, D. Wang, P. Fan, and K. B. Letaief, “Achievable information rate in hybrid VLC-RF networks with lighting energy harvesting,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6852–6864, Oct. 2021. [23] S. Shi, G. Gui, Y. Lin, C. Yuen, O. A. Dobre, and F. Adachi, “Joint beamformer design and power allocation method for hybrid RF-VLCP system,” IEEE Internet Things J., vol. 11, no. 5, pp. 7878–7892, Sept. 2024. [24] T. Tang, L. Shi, Q. Li, and Z. Xiong, “Sustainability-driven resource allocation for SLIPT-assisted hybrid VLC/RF IoT systems,” IEEE Wireless Commun. Lett., vol. 13, no. 6, pp. 1765–1769, Apr. 2024. [25] H. Peng, Q. Li, A. Pandharipande, X. Ge, and J. Zhang, “End-to-end performance optimization of a dual-hop hybrid VLC/RF IoT system based on SLIPT,” IEEE Internet Things J., vol. 8, no. 24, pp. 17 356– 17 371, May 2021. [26] A. H. F. Raouf, C. K. Anjinappa, and I. Guvenc, “Optimizing energy- harvesting hybrid VLC/RF networks with random receiver orientation,” IEEE Access, vol. 12, pp. 147 574–147 588, Oct. 2024. [27] B. G. Guzman, M. S. Mir, D. F. Fonseca, A. Galisteo, Q. Wang, and D. Giustiniano, “Prototyping visible light communication for the Internet of Things using OpenVLC,” IEEE Commun. Mag., vol. 61, no. 5, pp. 122–128, May 2023. [28] J. Li, A. Liu, G. Shen, L. Li, C. Sun, and F. Zhao, “Retro-VLC: Enabling battery-free duplex visible light communication for mobile and IoT applications,” in Proc. 16th Int. Workshop on Mobile Comput. Syst. and Appl. (HotMobile), Feb. 2015, p. 21–26. [29] X. Xu et al., “PassiveVLC: Enabling practical visible light backscatter communication for battery-free IoT applications,” in Proc. 23rd Annu. Int. Conf. on Mobile Comput. and Netw. (MobiCom), Oct. 2017, p. 180–192. [30] M. S. Mir, B. G. Guzman, A. Varshney, and D. Giustiniano, “Pas- siveLiFi: Rethinking LiFi for low-power and long range RF backscatter,” in Proc. 23rd Annu. Int. Conf. on Mobile Comput. and Netw. (MobiCom), Oct. 2021, p. 697–709. [31] M. Kong et al., “Toward self-powered and reliable visible light com- munication using amorphous silicon thin-film solar cells,” Opt. Express, vol. 27, no. 24, pp. 34 542–34 551, Nov 2019. [32] W. Lei, Z. Chen, Y. Xu, C. Jiang, J. Lin, and J. Fang, “Negatively biased solar cell optical receiver for underwater wireless optical communication system with low peak average power ratio,” IEEE Photon. J., vol. 14, pp. 1–9, Aug. 2022. [33] W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse- biased solar panel optical receiver for simultaneous visible light com- munication and energy harvesting,” Opt. Express, vol. 24, no. 22, pp. A1300–A1305, Oct. 2016. [34] Y. Zhou, A. Ibrahim, M. Muttillo, P. Manganiello, H. Ziar, and O. Is- abella, “Bandwidth characterization of c-Si solar cells as VLC receiver under colored LEDs,” in Proc. 8th Int. Conf. Smart and Sustain. Technolo. (SpliTech), Aug. 2023, pp. 1–5. [35] M. Neukom, S. Z¨ufle, S. Jenatsch, and B. Ruhstaller, “Opto-electronic characterization of third-generation solar cells,” Sci. and Technol. of Advanced Mater., vol. 19, no. 1, pp. 291–316, Mar. 2018. [36] M. Hejri and H. Mokhtari, “On the comprehensive parametrization of the photovoltaic (PV) cells and modules,” IEEE J. Photovolt., vol. 7, no. 1, pp. 250–258, Jan. 2017. [37] J. Nelson, The Physics of Solar Cells. Imperial College Press, 2003. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XXXX 2025 14 [38] S. Pindado et al., “Simplified Lambert W-function math equations when applied to photovoltaic systems modeling,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1779–1788, Jan. 2021. [39] M. de Brito, L. Sampaio, L. Galotto, G. Melo, and C. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Trans. Ind. Electron., vol. 60, pp. 1156–1167, Mar. 2013. [40] M. Hlaili and H. Mechergui, “Comparison of different MPPT algorithms with a proposed one using a power estimator for grid connected PV systems,” Int. J. of Photoenergy, vol. 2016, pp. 1 728 398–1 728 408, Jun. 2016. [41] OSI Optoelectronics, “Photodiode characteristics and applications,” Tech. Rep., 2007. [42] R. Saffari, M. Dolatshahi, and S. Zohoori, “A fully-integrated, low-power transimpedance amplifier for 5Gbps optical front-end,” in Proc. 28th Iranian Conf. on Elect. Eng. (ICEE), 2020, pp. 1–5. [43] Y. Takahashi, D. Ito, M. Nakamura, A. Tsuchiya, T. Inoue, and K. Kishine, “Low-power regulated cascode cmos transimpedance am- plifier with local feedback circuit,” Electronics, vol. 11, no. 6, Mar. 2022. [44] M. T. I. Badal, M. B. I. Reaz, L. S. Yeng, M. A. S. Bhuiyan, and F. Haque, “Advancement of CMOS transimpedance amplifier for optical receiver,” Trans. Electr. and Electron. Mater., vol. 20, no. 2, pp. 73–84, Apr. 2019. [45] J. Fakidis, H. Helmers, and H. Haas, “Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link,” IEEE Photon. Technol. Lett., vol. 32, no. 19, pp. 1277–1280, Aug. 2020. [46] A. A. Goje et al., “Review of flexible perovskite solar cells for indoor and outdoor applications,” Mater. for Renewable and Sustain. Energy, vol. 13, no. 1, pp. 155–179, Apr. 2024. [47] M. C. Scharber, “Efficiency of emerging photovoltaic devices under indoor conditions,” Solar RRL, vol. 8, no. 2, p. 2300811, Nov. 2024. [48] ANYSOLAR Ltd., “SM111K04L. https://www.anysolar.biz/Gen2,” Ac- cessed: 02-04-2025. [49] “ISO 8995:2002 Lighting of indoor work places,” International Organi- zation for Standardization, Geneva, CH, Standard, Mar. 2002. [50] B. G. Guzman et al., “Toward sustainable greenhouses using battery-free LiFi-enabled Internet of Things,” IEEE Commun. Mag., vol. 61, no. 5, pp. 129–135, May 2023. [51] S. Das, “Photovoltaics as high-speed optical wireless communication receiver,” PhD thesis, University of Edinburgh, Edinburgh, UK, Sep. 2021. [52] N. Kondrath and M. K. Kazimierczuk, “Bandwidth of current trans- formers,” IEEE Trans. Instr. Meas., vol. 58, no. 6, pp. 2008–2016, Jul. 2009. [53] e-peas Semiconductors., “AEM10330. https://e-peas.com/documents /AEM10330/DS-AEM10330.pdf,” Accessed: 02-04-2025. [54] STMicroelectronics., “Comparator TS881. https://www.st.com/ re- source/en/datasheet/ts881.pdf,” Accessed: 02-04-2025. [55] Maxim Integrated Products., “Low-Voltage, Phase-Reversal Ana- log Switch MAX4528. https://www.analog.com/media/en/technical- documentation/data-sheets/MAX4528.pdf,” Accessed: 02-04-2025. [56] NXP Semiconductors, “Kinetis KL03 32 KB Flash. https://www.nxp. com/docs/en/data-sheet/KL03P24M48SF0.pdf,” Accessed: 02-04-2025. [57] Hammond., “Miniature Audio Potted 101 Series. https://www.hammfg. com/electronics/transformers/audio/101.pdf,” Accessed: 02-04-2025. [58] K. E. Jeon et al., “LuXSensing beacon: Batteryless IoT sensor, design methodology, and field test for sustainable greenhouse monitoring,” IEEE Trans. AgriFood Electron., vol. 1, no. 2, pp. 86–98, Aug. 2023. [59] I. Cappelli et al., “Autonomous IoT monitoring matching spectral artificial light manipulation for horticulture,” Sensors, vol. 22, no. 11, Apr. 2022. [60] S. Mosavat, M. Zella, M. Handte, A. J. Golkowski, and P. J. Marr´on, “Experience: Aristotle: wake-up receiver-based, star topology batteryless sensor network,” in Proc. 22nd ACM/IEEE Int. Conf. Inf. Process. in Sensor Netw. (IPSN), May 2023, p. 177–190. [61] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014 | es |