Mostrar el registro sencillo del ítem
An End-to-End Pipeline Perspective on Video Streaming in Best-Effort Networks: A Survey and Tutorial
dc.contributor.author | Peroni, Leonardo | |
dc.contributor.author | Gorinsky, Sergey | |
dc.date.accessioned | 2025-07-17T09:06:40Z | |
dc.date.available | 2025-07-17T09:06:40Z | |
dc.date.issued | 2025-12 | |
dc.identifier.citation | [1] Tobias Achterberg and Roland Wunderling. 2013. Mixed Integer Programming: Analyzing 12 Years of Progress. Springer. [2] Samira Afzal, Vanessa Testoni, Christian Esteve Rothenberg, Prakash Kolan, and Imed Bouazizi. 2023. A holistic survey of multipath wireless video streaming. JNCA 212, article 103581 (2023), 1–41. [3] Prateek Agrawal, Anatoliy Zabrovskiy, Adithyan Ilangovan, Christian Timmerer, and Radu Prodan. 2021. FastTTPS: Fast approach for video transcoding time prediction and scheduling for HTTP adaptive streaming videos. Cluster Computing 24, 3 (2021), 1605–1621. [4] Ishfaq Ahmad, XiaohuiWei, Yu Sun, and Ya-Qin Zhang. 2005. Video transcoding: An overview of various techniques and research issues. IEEE TMM 7, 5 (2005), 793–804. [5] Saamer Akhshabi, Sethumadhavan Narayanaswamy, Ali C. Begen, and Constantine Dovrolis. 2012. An experimental evaluation of rate-adaptive video players over HTTP. Signal Processing: Image Communication 27, 4 (2012), 271–287. [6] Zahaib Akhtar, Sanjay Rao, Bruno Ribeiro, Yun Seong Nam, Jessica Chen, Jibin Zhan, Ramesh Govindan, Ethan Katz- Bassett, and Hui Zhang. 2018. Oboe: Auto-tuning video ABR algorithms to network conditions. In SIGCOMM 2018. 44–58. [7] Abubakr O. Al-Abbasi, Vaneet Aggarwal, Tian Lan, Yu Xiang, Moo-Ryong Ra, and Yih-Farn Chen. 2021. FastTrack: Minimizing stalls for CDN-based over-the-top video streaming systems. IEEE TCC 9, 4 (2021), 1453–1466. [8] Ethem Alpaydin. 2020. Introduction to Machine Learning. MIT Press. [9] Sa’di Altamimi and Shervin Shirmohammadi. 2020. QoE-Fair DASH video streaming using server-side reinforcement learning. ACM TOMM 16, 2s, Article 68 (2020), 1–21. [10] Consumer Technology Association. 2022. CTA-5006: Web Application Video Ecosystem – Common Media Server Data. November 2022. Retrieved 9 June 2025 from https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/ cta-5006-final.pdf [11] Christos G. Bampis and Alan C. Bovik. 2018. Feature-based prediction of streaming video QoE: Distortions, stalling and memory. Signal Processing: Image Communication 68 (2018), 218–228. [12] Alcardo Alex Barakabitze, Nabajeet Barman, Arslan Ahmad, Saman Zadtootaghaj, Lingfen Sun, Maria G. Martini, and Luigi Atzori. 2019. QoEmanagement ofmultimedia streaming services in future networks: A tutorial and survey. IEEE COMST 22, 1 (2019), 526–565. [13] Nabajeet Barman and Maria G. Martini. 2019. QoE modeling for HTTP adaptive video streaming – A survey and open challenges. IEEE Access 7 (2019), 30831–30859. [14] A. Beben, P. Wiśniewski, J. Mongay Batalla, and P. Krawiec. 2016. ABMA+: Lightweight and efficient algorithm for HTTP adaptive streaming. In MMSys 2016. 1–11. [15] Richard Bellman. 1966. Dynamic programming. Science 153, 3731 (1966), 34–37. [16] Abdelhak Bentaleb, Ali C. Begen, and Roger Zimmermann. 2016. SDNDASH: Improving QoE of HTTP adaptive streaming using software defined networking. In MM 2016. 1296–1305. [17] Abdelhak Bentaleb,May Lim, Mehmet N. Akcay, Ali C. Begen, and Roger Zimmermann. 2021. Common media client data (CMCD): Initial findings. In NOSSDAV 2021. [18] Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C. Begen, and Roger Zimmermann. 2023. Meta reinforcement learning for rate adaptation. In INFOCOM 2023. 1–10. [19] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger Zimmermann. 2019. A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE COMST 21, 1 (2019), 562–585. [20] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the hot object memory cache in a content delivery network. In NSDI 2017. 483–498. [21] Kashif Bilal, Emna Baccour, Aiman Erbad, Amr Mohamed, and Mohsen Guizani. 2019. Collaborative joint caching and transcoding in mobile edge networks. JNCA 136 (2019), 86–99. [22] Kashif Bilal and Aiman Erbad. 2017. Edge computing for interactive media and video streaming. In FMEC 2017. 68–73. [23] Bitmovin. 2020. Bitmovin Video Developer. Report. Bitmovin. Retrieved fromhttps://bitmovin.com/video-developerreport# pdf [24] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uhlig. 2018. Open Connect everywhere: A glimpse at the internet ecosystem through the lens of the Netflix CDN. ACM SIGCOMM CCR 48, 1 (2018), 28–34. [25] Benjamin Bross, Ye-KuiWang, Yan Ye, Shan Liu, Jianle Chen, Gary J. Sullivan, and Jens-Rainer Ohm. 2021. Overview of the versatile video coding (VVC) standard and its applications. IEEE TCSVT 31, 10 (2021), 3736–3764. [26] Thiago Luiz Alves Bubolz, Ruhan A. Conceição, Mateus Grellert, Luciano Agostini, Bruno Zatt, and Guilherme Correa. 2019. Quality and energy-aware HEVC transrating based onmachine learning. IEEE TCSI 66, 6 (2019), 2124–2136. [27] Chunlei Cai, Li Chen, Xiaoyun Zhang, and Zhiyong Gao. 2020. End-to-end optimized ROI image compression. IEEE TIP 29 (2020), 3442–3457. [28] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2016. BBR: Congestionbased congestion control: Measuring bottleneck bandwidth and round-trip propagation time. Queue 14, 5 (2016), 20–53. [29] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016. Analysis and design of the Google congestion control for web real-time communication (WebRTC). In MMSys 2016. 12 pages. [30] Chao Chen, Yao-Chung Lin, Steve Benting, and Anil Kokaram. 2018. Optimized transcoding for large scale adaptive streaming using playback statistics. In ICIP 2018. 3269–3273. [31] Jiasi Chen, Bharath Balasubramanian, and Zhe Huang. 2019. Liv(e)-ing on the edge: User-uploaded live streams driven by “First-Mile” edge decisions. In EDGE 2019. 41–50. [32] Ying Chen, Qing Li, Aoyang Zhang, Longhao Zou, Yong Jiang, Zhimin Xu, Junlin Li, and Zhenhui Yuan. 2021. Higher quality live streaming under lower uplink bandwidth: An approach of super-resolution based video coding. In NOSSDAV 2021. 75–81. [33] Yue Chen, Debargha Murherjee, Jingning Han, Adrian Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui Su, Urvang Joshi, et al. 2018. An overview of core coding tools in the AV1 video codec. In PCS 2018. 41–45. [34] Yixu Chen, Yongjun Wu, Hai Wei, and Sriram Sethuraman. 2023. Subjective and Objective Video Quality Assessment of High Dynamic Range Sports Content. Technology Blog, Amazon Science. Retrieved 9 June 2025 from https://www.amazon.science/publications/subjective-and-objective-video-quality-assessment-of-highdynamic- range-sports-content [35] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN 17, 1 (1989), 1–14. [36] Kiho Choi, Jianle Chen, Dmytro Rusanovskyy, Kwang-Pyo Choi, and Euee S. Jang. 2020. An overview of theMPEG-5 essential video coding standard [Standards in a Nutshell]. IEEE SPM 37, 3 (2020), 160–167. [37] Cisco. 2019. Cisco Visual Networking Index: Forecast and Trends, 2017-2022. White Paper C11-741490-00. Retrieved 9 June 2025 from https://branden.biz/wp-content/uploads/2018/12/Cisco-Visual-Networking-Index_Forecast-and- Trends_2017_2022.pdf [38] Conviva. 2022. Conviva’s State of Streaming Q2 2022. Report. Conviva. Retrieved fromhttps://www.conviva.com/wpcontent/ uploads/2022/09/Q2-SoS.pdf [39] Luis Costero, Arman Iranfar, Marina Zapater, Francisco D. Igual, Katzalin Olcoz, and David Atienza. 2019. MAMUT: Multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In DATE 2019. 558–563. [40] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian, and Dimitris Samaras. 2022. Swift: Adaptive video streaming with layered neural codecs. In NSDI 2022. 103–118. [41] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2013. ELASTIC: A client-side controller for dynamic adaptive streaming over HTTP (DASH). In PV 2013. [42] Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo. 2019. ERUDITE: A deep neural network for optimal tuning of adaptive video streaming controllers. In MMSys 2019. 13–24. [43] John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop, Ramesh K. Sitaraman, and Bill Weihl. 2002. Globally distributed content delivery. IEEE IC 6, 5 (2002), 50–58. [44] Humberto Dominguez, Osslan Vergara, Vianey Sanchez, Efren Casas, and K. Rao. 2014. The H.264 video coding standard. IEEE Potentials 33, 2 (2014), 32–38. [45] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-resolution using deep convolutional networks. IEEE TPAMI 38, 2 (2015), 295–307. [46] Kai Dong, Jun He, and Wei Song. 2015. QoE-aware adaptive bitrate video streaming over mobile networks with caching proxy. In ICNC 2015. 737–741. [47] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang, Henry Hoffmann, and Junchen Jiang. 2020. Server-driven video streaming for deep learning inference. In SIGCOMM 2020. 557–570. [48] Haihan Duan, Jiaye Li, Sizheng Fan, Zhonghao Lin, Xiao Wu, and Wei Cai. 2021. Metaverse for social good: A university campus prototype. In MM 2021. 153–161. [49] Joshua P. Ebenezer, Zaixi Shang, YongjunWu, HaiWei, and Alan C. Bovik. 2020. No-Reference Video Quality Assessment Using Space-Time Chips. Technology Blog, Amazon Science. Retrieved 9 June 2025 from https://www.amazon. science/publications/no-reference-video-quality-assessment-using-space-time-chips [50] Akrum Elkhazin, Avinash Ramachandran, Roshan Baliga, Jai Krishnan, Tarek Amara, Alex Converse, and Yueshi Shen. 2018. How VP9 Delivers Value for Twitch’s Esports Live Streaming. Technology Blog, Twitch. Retrieved 9 June 2025 from https://blog.twitch.tv/en/2018/12/19/how-v-p9-delivers-value-for-twitch-s-esports-live-streaming- 35db26f6322f/ [51] Alireza Erfanian, Hadi Amirpour, Farzad Tashtarian, Christian Timmerer, and Hermann Hellwagner. 2021. LwTE: Light-weight transcoding at the edge. IEEE Access 9 (2021), 112276–112289. [52] Nagabhushan Eswara, S. Ashique, Anand Panchbhai, Soumen Chakraborty, Hemanth P. Sethuram, Kiran Kuchi, Abhinav Kumar, and Sumohana S. Channappayya. 2020. Streaming video QoE modeling and prediction: A long short-term memory approach. IEEE TCSVT 30, 3 (2020), 661–673. [53] Jeroen Famaey, Steven Latré, Niels Bouten, Wim Van de Meerssche, Bart De Vleeschauwer, Werner Van Leekwijck, and Filip De Turck. 2013. On the merits of SVC-based HTTP adaptive streaming. In IM 2013. 419–426. [54] Tongtong Feng, Haifeng Sun, Qi Qi, JingyuWang, and Jianxin Liao. 2020. Vabis: Video adaptation bitrate system for time-critical live streaming. IEEE TMM 22, 11 (2020), 2963–2976. [55] Dario Fontanel, David Higham, and Benoit Quentin Arthur Vallade. 2023. On the Importance of Spatio-Temporal Learning for Video Quality Assessment. Technology Blog, Amazon Science. Retrieved 9 June 2025 from https:// www.amazon.science/publications/on-the-importance-of-spatio-temporal-learning-for-video-quality-assessment [56] Peter I. Frazier. 2018. A tutorial on Bayesian optimization. arXiv:1807.02811. Retrieved from https://arxiv.org/abs/ 1807.02811 [57] Christos G. Bampis, Li-Heng Chen, and Zhi Li. 2022. For Your Eyes Only: Improving Netflix Video Quality with Neural Networks. Technology Blog, Netflix. Retrieved 9 June 2025 from https://netflixtechblog.com/for-your-eyesonly- improving-netflix-video-quality-with-neural-networks-5b8d032da09c [58] Guanyu Gao, Huaizheng Zhang, HanHu, YonggangWen, Jianfei Cai, Chong Luo, andWenjun Zeng. 2018. Optimizing quality of experience for adaptive bitrate streaming via viewer interest inference. IEEE TMM 20, 12 (2018), 3399–3413. [59] Yun Gao, Xin Wei, and Liang Zhou. 2020. Personalized QoE improvement for networking video service. IEEE JSAC 38, 10 (2020), 2311–2323. [60] D. García-Lucas, G. Cebrián-Márquez, A. J. Díaz-Honrubia, T. Mallikarachchi, and P. Cuenca. 2021. Cost-efficient HEVC-based quadtree splitting (HEQUS) for VVC video transcoding. Signal Processing: Image Communication 94, article 116199 (2021), 1–13. [61] Ehab Ghabashneh and Sanjay Rao. 2020. Exploring the interplay between CDN caching and video streaming performance. In INFOCOM 2020. 516–525. [62] Danilo Giordano, Stefano Traverso, Luigi Grimaudo, Marco Mellia, Elena Baralis, Alok Tongaonkar, and Sabyasachi Saha. 2015. YouLighter: An unsupervised methodology to unveil YouTube CDN changes. In ITC 2015. 19–27. [63] Torkel Glad and Lennart Ljung. 2017. Control Theory. CRC Press. [64] Jeff Gong, Sahil Dhanju, Chih-Chiang Lu, and Yueshi Shen. 2017. Live Video Transmuxing/Transcoding: FFmpeg vs TwitchTranscoder, Part I. Technology Blog, Twitch. Retrieved 9 June 2025 from https://blog.twitch.tv/en/2017/10/10/ live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/ [65] Mario Graf, Christian Timmerer, and Christopher Mueller. 2017. Towards bandwidth efficient adaptive streaming of omnidirectional video over HTTP: Design, implementation, and evaluation. In MMSys 2017. 261–271. [66] Mateus Grellert, Tiago Oliveira, Carlos Rafael Duarte, and Luis A. da Silva Cruz. 2018. Fast HEVC transrating using random forests. In VCIP 2018. 1–4. [67] Dan Grois, Alex Giladi, Kiho Choi, MinWoo Park, Yinji Piao, Minsoo Park, and Kwang Pyo Choi. 2021. Performance comparison of emerging EVC and VVC video coding standards with HEVC and AV1. SMPTE Motion Imaging Journal 130, 4 (2021), 1–12. [68] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya Itzhaky, and Ofer Hadar. 2013. Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. In PCS 2013. 394–397. [69] Ivo Grondman, Lucian Busoniu, Gabriel A.D. Lopes, and Robert Babuska. 2012.Asurvey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE SMCC 42, 6 (2012), 1291–1307. [70] Maximilian Grüner, Melissa Licciardello, and Ankit Singla. 2020. Reconstructing proprietary video streaming algorithms. In USENIX ATC 2020. 529–542. [71] Jing Guo and Guanghui Zhang. 2021. A video-quality driven strategy in short video streaming. In MSWiM 2021. 221–228. [72] Liwei Guo, Ashwin Kumar Gopi Valliammal, Raymond Tam, Chris Pham, Agata Opalach, and Weibo Ni. 2021. Bringing AV1 Streaming to Netflix Members’ TVs. Technology Blog, Netflix. Retrieved 9 June 2025 from https: //netflixtechblog.com/bringing-av1-streaming-to-netflix-members-tvs-b7fc88e42320 [73] Craig Gutterman, Brayn Fridman, Trey Gilliland, Yusheng Hu, and Gil Zussman. 2020. STALLION: Video adaptation algorithm for low-latency video streaming. In MMSys 2020. 327–332. [74] Craig Gutterman, Katherine Guo, Sarthak Arora, Trey Gilliland, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett, and Gil Zussman. 2020. Requet: Real-time QoE metric detection for encrypted YouTube traffic. ACM TOMM 16, 2s (2020), 1 – 28. [75] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A new TCP-friendly high-speed TCP variant. ACM OSR 42, 5 (2008), 64–74. [76] Jianchao He, Miao Hu, Yipeng Zhou, and DiWu. 2020. LiveClip: Towards intelligent mobile short-form video streaming with deep reinforcement learning. In NOSSDAV 2020. 54–59. [77] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive 360 VR video streaming: Divide and conquer. In IEEE ISM. 107–110. [78] Tobias Hoßfeld and Christian Keimel. 2014. Crowdsourcing in QoE evaluation. In Quality of Experience: Advanced Concepts, Applications and Methods, Sebastian Möller and Alexander Raake (Eds.). Springer, 315–327. [79] Shenghong Hu, Min Xu, Haimin Zhang, Chunxia Xiao, and Chao Gui. 2019. Affective content-aware adaptation scheme on QoE optimization of adaptive streaming over HTTP. ACM TOMM 15, 3s, article 100 (2019), 1–18. [80] Tianchi Huang, Xin Yao, Chenglei Wu, Rui-Xiao Zhang, Zhengyuan Pang, and Lifeng Sun. 2019. Tiyuntsong: A self-play reinforcement learning approach for ABR video streaming. In ICME 2019. 1678–1683. [81] Tianchi Huang, Rui-Xiao Zhang, and Lifeng Sun. 2021. Deep reinforced bitrate ladders for adaptive video streaming. In NOSSDAV 2021. 66–73. [82] Tianchi Huang, Rui-Xiao Zhang, Chenglei Wu, and Lifeng Sun. 2023. Optimizing adaptive video streaming with human feedback. In MM 2023. 1707–1718. [83] Tianchi Huang, Chao Zhou, Xin Yao, Rui-Xiao Zhang, Chenglei Wu, Bing Yu, and Lifeng Sun. 2020. Quality-aware neural adaptive video streaming with lifelong imitation learning. IEEE JSAC 38, 10 (2020), 2324–2342. [84] Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, Xin Yao, and Lifeng Sun. 2020. Stick: A harmonious fusion of buffer-based and learning-based approach for adaptive streaming. In INFOCOM 2020. 1967–1976. [85] Te-Yuan Huang, Chaitanya Ekanadham, Andrew J. Berglund, and Zhi Li. 2019. Hindsight: Evaluate video bitrate adaptation at scale. In MMSys 2019. 86–97. [86] Te-YuanHuang, Ramesh Johari, Nick McKeown, MatthewTrunnell, and MarkWatson. 2014.Abuffer-based approach to rate adaptation: Evidence from a large video streaming service. In SIGCOMM 2014. 187–198. [87] Liangyu Huo, Zulin Wang, Mai Xu, Yong Li, Zhiguo Ding, and Hao Wang. 2020. A meta-learning framework for learning multi-user preferences in QoE optimization of DASH. IEEE TCSVT 30, 9 (2020), 3210–3225. [88] Quan Huynh-Thu and Mohammed Ghanbari. 2008. Scope of validity of PSNR in image/video quality assessment. Electronics Letters 44, 13 (2008), 800–801. [89] International Telecommunication Union. 2017. Parametric Bitstream-Based Quality Assessment of Progressive Download and Adaptive Audiovisual Streaming Services over Reliable Transport, Amendment 1. Recommendation P.1203. Retrieved 9 June 2025 from https://www.itu.int/rec/T-REC-P.1203 [90] International Telecommunication Union. 2017. Vocabulary for Performance, Quality of Service and Quality of Experience. Recommendation P.10. Retrieved 9 June 2025 from https://www.itu.int/rec/T-REC-P.10-201711-I/en [91] International Telecommunication Union. July 2016. Mean Opinion Score Interpretation and Reporting. Recommendation P.800.2. Retrieved 9 June 2025 from https://www.itu.int/rec/T-REC-P.800.2 [92] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zussman. 2018. Performance evaluation of WebRTC-based video conferencing. ACM SIGMETRICS PER 45, 3 (2018), 56–68. [93] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2014. Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. IEEE/ACM ToN 22, 1 (2014), 326–340. [94] Ingemar Johansson and Sarker Zaheduzzaman. 2017. Self-Clocked Rate Adaptation for Multimedia. December 2017, RFC 8298, IETF. Retrieved 9 June 2025 from https://www.rfc-editor.org/rfc/rfc8298.html [95] Madhuri A. Joshi, Mehul S. Raval, Yogesh H. Dandawate, Kalyani R. Joshi, and Shilpa P. Metkar. 2014. Image and Video Compression: Fundamentals, Techniques, and Applications. CRC Press. [96] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. 2015. SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In ICCW 2015. 1765–1770. [97] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. 2016. Measurement of quality of experience of video-ondemand services: A survey. IEEE COMST 18, 1 (2016), 401–418. [98] Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd Goodall, and Gizem Rufo. 2019. DeepFovea: Neural reconstruction for foveated rendering and video compression using learned statistics of natural videos. ACM TOG 38, 6 (2019), 1–13. [99] Aggelos K. Katsaggelos, Rafael Molina, and Javier Mateos. 2007. Super Resolution of Images and Video. Springer. [100] Ioannis Katsavounidis. 2018. Dynamic Optimizer – A Perceptual Video Encoding Optimization Framework. Technology Blog, Netflix. Retrieved 9 June 2025 from https://netflixtechblog.com/dynamic-optimizer-a-perceptual-videoencoding- optimization-framework-e19f1e3a277f [101] Angeliki V. Katsenou, Fan Zhang, Mariana Afonso, and David R. Bull. 2019. A subjective comparison of AV1 and HEVC for adaptive video streaming. In ICIP 2019. 4145–4149. [102] Somayeh Kianpisheh and Tarik Taleb. 2023. A survey on in-network computing: Programmable data plane and technology specific applications. IEEE COMST 25, 1 (2023), 701–761. [103] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. 2020. Neural-enhanced live streaming: Improving live video ingest via online learning. In SIGCOMM 2020. 107–125. [104] Takuto Kimura, Tatsuaki Kimura, Arifumi Matsumoto, and Kazuhisa Yamagishi. 2021. Balancing quality of experience and traffic volume in adaptive bitrate streaming. IEEE Access 9 (2021), 15530–15547. [105] Takuto Kimura, Tatsuaki Kimura, and Kazuhisa Yamagishi. 2021. Context-aware adaptive bitrate streaming system. In ICC 2021. 1–7. [106] Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman. 2020. RL-Cache: Learning-based cache admission for content delivery. IEEE JSAC 38, 10 (2020), 2372–2385. [107] Dilip Kumar Krishnappa, Michael Zink, and Ramesh K. Sitaraman. 2015. Optimizing the video transcoding workflow in content delivery networks. In MMSys 2015. 37–48. [108] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. CACM 60, 6 (2017), 84–90. [109] Jonathan Kua, Grenville Armitage, and Philip Branch. 2017. A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE COMST 19, 3 (2017), 1842–1866. [110] Fatima Laiche, Asma Ben Letaifa, Imene Elloumi, and Taoufik Aguili. 2021. When machine learning algorithms meet user engagement parameters to predict video QoE. Wireless Personal Communications 116, 3 (2021), 2723–2741. [111] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017. The QUIC transport protocol: Design and internet-scale deployment. In SIGCOMM 2017. 183–196. [112] Hoang Le, Liang Zhang, Amir Said, Guillaume Sautiere, Yang Yang, Pranav Shrestha, Fei Yin, Reza Pourreza, and Auke Wiggers. 2022. MobileCodec: Neural inter-frame video compression on mobile devices. In MMSys 2022. 324– 330. [113] Dayoung Lee, Jungwoo Lee, and Minseok Song. 2019. Video quality adaptation for limiting transcoding energy consumption in video servers. IEEE Access 7 (2019), 126253–126264. [114] Jong-Seok Lee and Touradj Ebrahimi. 2012. Perceptual video compression: A survey. IEEE J-STSP 6, 6 (2012), 684–697. [115] Feng Li, Jae Chung, and Mark Claypool. 2021. Three-year trends in YouTube video content and encoding. In SIGMAP 2021. 15–22. [116] Hanchen Li, Yihua Cheng, Ziyi Zhang, Qizheng Zhang, Anton Arapin, Nick Feamster, and Amrita Mazumdar. 2023. Optimizing real-time video experience with data scalable codec. In EMS 2023. 15–21. [117] Xiangbo Li, Mahmoud Darwich, and Magdy Bayoumi. 2021. A survey on cloud-based video streaming services. Advances in Computers 123 (2021), 193–244. [118] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering for resource-efficient real-time video analytics. In SIGCOMM 2020. 359–376. [119] Yunlong Li, Shanshe Wang, Xinfeng Zhang, Chao Zhou, and Siwei Ma. 2020. High efficiency live video streaming with frame dropping. In ICIP 2020. 1226–1230. [120] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha Manohara. 2016. Toward a Practical Perceptual Video Quality Metric. Technology Blog, Netflix. Retrieved 9 June 2025 from https://medium.com/netflixtechblog/ toward-a-practical-perceptual-video-quality-metric-653f208b9652 [121] Zhuqi Li, Yaxiong Xie, Ravi Netravali, and Kyle Jamieson. 2023. Dashlet: Taming swipe uncertainty for robust short video streaming. In NSDI 2023. 1583–1599. [122] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C. Begen, and David Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale. IEEE JSAC 32, 4 (2014), 719–733. [123] Melissa Licciardello, Maximilian Grüner, and Ankit Singla. 2020. Understanding video streaming algorithms in the wild. In PAM 2020. 298–313. [124] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K. Sitaraman, Don Towsley, and Xinbing Wang. 2020. Grad: Learning for overhead-aware adaptive video streaming with scalable video coding. In MM 2020. 349–357. [125] Salvatore Loreto and Simon Pietro Romano. 2014. Real-Time Communication withWebRTC: Peer-to-Peer in the Browser. O’Reilly Media. [126] Christian Lottermann, Serhan Gül, Damien Schroeder, and Eckehard Steinbach. 2015. Network-aware video level encoding for uplink adaptive HTTP streaming. In ICC 2015. 6861–6866. [127] Zhenxiao Luo, ZelongWang, Jinyu Chen, Miao Hu, Yipeng Zhou, Tom Z. J. Fu, and DiWu. 2021. CrowdSR: Enabling high-quality video ingest in crowdsourced livecast via super-resolution. In NOSSDAV 2021. 91–97. [128] Alex Mackin, Fan Zhang, and David R. Bull. 2015. A study of subjective video quality at various frame rates. In ICIP 2015. 3407–3411. [129] Sharat Chandra Madanapalli, Alex Mathai, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2021. ReCLive: Realtime classification and QoE inference of live video streaming services. In IWQOS 2021. 1–7. [130] Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic nuggets in content delivery. ACM SIGCOMM CCR 45, 3 (2015), 52–66. [131] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive video streaming with Pensieve. In SIGCOMM 2017. 197–210. [132] Aditya Mavlankar, Zhi Li, Lukáš Krasula, and Christos Bampis. 2023. All of Netflix’s HDR Video Streaming Is Now Dynamically Optimized. Technology Blog, Netflix. Retrieved 9 June 2025 from https://netflixtechblog.com/all-ofnetflixs- hdr-video-streaming-is-now-dynamically-optimized-e9e0cb15f2ba [133] Guido Meardi, Simone Ferrara, Lorenzo Ciccarelli, Guendalina Cobianchi, Stergios Poularakis, Florian Maurer, Stefano Battista, and Ahmad Byagowi. 2020. MPEG-5 part 2: Low complexity enhancement video coding (LCEVC): Overview and performance evaluation. In Applications of Digital Image Processing XLIII, Andrew G. Tescher and Touradj Ebrahimi (Eds.). Vol. 11510, SPIE. [134] Marwa Meddeb, Marco Cagnazzo, and Beátrice Pesquet-Popescu. 2014. Region-of-interest-based rate control scheme for high-efficiency video coding. In ICASSP 2014. 7338–7342. [135] Linghui Meng, Fangyu Zhang, Lei Bo, Hancheng Lu, Jin Qin, and Jiangping Han. 2019. Fastconv: Fast learning based adaptive bitrate algorithm for video streaming. In GLOBECOM 2019. 1–6. [136] Zili Meng, Jing Chen, Yaning Guo, Chen Sun, Hongxin Hu, and Mingwei Xu. 2019. PiTree: Practical implementation of ABR algorithms using decision trees. In MM 2019. 2431–2439. [137] Konstantin Miller, Abdel-Karim Al-Tamimi, and Adam Wolisz. 2016. QoE-based low-delay live streaming using throughput predictions. ACM TOMM 13, 1, article 4 (2016), 1–24. [138] Christian Moldovan and Florian Metzger. 2016. Bridging the gap between QoE and user engagement in HTTP video streaming. In ITC 2016. 103–111. [139] Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and Hui Zhang. 2015. Practical, real-time centralized control for CDN-based live video delivery. In SIGCOMM 2015. 311–324. [140] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki, Mehrdad Khani, Prateesh Goyal, and Mohammad Alizadeh. 2019. End-to-end transport for video QoE fairness. In SIGCOMM 2019. 408–423. [141] Michael J. Neely. 2010. Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan and Claypool. [142] Netflix. 2021. A Cooperative Approach To Content Delivery. A Netflix Briefing Paper. Retrieved 9 June 2025 from https://openconnect.netflix.com/Open-Connect-Briefing-Paper.pdf [143] Antonopoulos Nikos and Gillam Lee. 2010. Cloud Computing: Principles, Systems and Applications. Springer. [144] Andrey Norkin, Jan De Cock, Aditya Mavlankar, and Anne Aaron. 2016. More Efficient Mobile Encodes for Netflix Downloads. Technology Blog, Netflix. Retrieved 9 June 2025 from https://netflixtechblog.com/more-efficient-mobileencodes- for-netflix-downloads-625d7b082909 [145] Andrey Norkin, Joel Sole, Mariana Afonso, Kyle Swanson, Agata Opalach, Anush Moorthy, and Anne Aaron. 2020. SVT-AV1: Open-Source AV1 Encoder and Decoder. Technology Blog, Netflix. Retrieved 9 June 2025 from https:// netflixtechblog.com/svt-av1-an-open-source-av1-encoder-and-decoder-ad295d9b5ca2 [146] Jan Ozer. 2021. Which Codecs Does YouTube Use? Technology Blog, Streaming Learning Center. Retrieved 9 June 2025 from https://streaminglearningcenter.com/codecs/which-codecs-does-youtube-use.html [147] Jianli Pan, Subharthi Paul, and Raj Jain. 2011. A survey of the research on future internet architectures. IEEE Communications Magazine 49, 7 (2011), 26–36. [148] Haitian Pang, Zhi Wang, Chen Yan, Qinghua Ding, Kun Yi, Jiangchuan Liu, and Lifeng Sun. 2019. Content harvest network: Optimizing first mile for crowdsourced live streaming. IEEE TCSVT 29, 7 (2019), 2112–2125. [149] Kyoungjun Park and Myungchul Kim. 2019. EVSO: Environment-aware video streaming optimization of power consumption. In INFOCOM 2019. 973–981. [150] Min Ho Park, Jungyul Choi, and Jun Kyun Choi. 2017. A network-aware encoding rate control algorithm for real-time up-streaming video services. IEEE COMML 21, 7 (2017), 1653–1656. [151] Mukaddim Pathan and Rajkumar Buyya. 2008. A Taxonomy of CDNs. Springer. [152] Leonardo Peroni and Sergey Gorinsky. 2024. Quality of experience in video streaming: Status quo, pitfalls, and guidelines. In COMSNETS 2024. 1–10. [153] Leonardo Peroni, Sergey Gorinsky, Farzad Tashtarian, and Christian Timmerer. 2023. Empowerment of atypical viewers via low-effort personalized modeling of video streaming quality. PACMNET 1, CoNEXT3 (2023), 1–27. [154] Simone Porcu, Alessandro Floris, and Luigi Atzori. 2019. Towards the prediction of the quality of experience from facial expression and gaze direction. In ICIN 2019. 82–87. [155] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. 2018. A survey on deep learning: Algorithms, techniques, and applications. ACM CSUR 51, 5 (2018), 1–36. [156] Chunyu Qiao, JiliangWang, and Yunhao Liu. 2021. Beyond QoE: Diversity adaptation in video streaming at the edge. IEEE/ACM ToN 29, 1 (2021), 289–302. [157] Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang, and Chaoqun Yue. 2019. Quality-aware strategies for optimizing ABR video streaming QoE and reducing data usage. In MMSys 2019. 189– 200. [158] Yanyuan Qin, Ruofan Jin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Subhabrata Sen, BingWang, and Chaoqun Yue. 2017. A control theoretic approach to ABR video streaming: A fresh look at PID-based rate adaptation. In INFOCOM 2017. 1–9. [159] Alexander Raake, Jörgen Gustafsson, Savvas Argyropoulos, Marie-Neige Garcia, David Lindegren, Gunnar Heikkilä, Martin Pettersson, Peter List, and Bernhard Feiten. 2012. IP-based mobile and fixed network audiovisual media services. IEEE Signal Processing Magazine 29, 6 (2012), 163–163. [160] Dezhi Ran, Yuanxing Zhang,Wenhan Zhang, and Kaigui Bian. 2020. SSR: Joint optimization of recommendation and adaptive bitrate streaming for short-form video feed. In MSN 2020. 418–426. [161] Devdeep Ray, Jack Kosaian, K. V. Rashmi, and Srinivasan Seshan. 2019. Vantage: Optimizing video upload for timeshifted viewing of social live streams. In SIGCOMM 2019. 380–393. [162] Yusuf Sani, Andreas Mauthe, and Christopher Edwards. 2017. Adaptive bitrate selection: A survey. IEEE COMST 19, 4 (2017), 2985–3014. [163] Yusuf Sani, Darijo Raca, Jason J. Quinlan, and Cormac J. Sreenan. 2020. SMASH: A supervised machine learning approach to adaptive video streaming over HTTP. In QoMEX 2020. 2–7. [164] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE TCSVT 17, 9 (2007), 1103–1120. [165] Rizwan A. Shah, Mamoona N. Asghar, Saima Abdullah, Martin Fleury, and Neelam Gohar. 2019. Effectiveness of crypto-transcoding for H.264/AVC and HEVC video bit-streams. Multimedia Tools and Applications 78, 15 (2019), 21455–21484. [166] Wanxin Shi, Qing Li, Chao Wang, Gengbiao Shen, Weichao Li, Yu Wu, and Yong Jiang. 2019. LEAP: Learning-based smart edge with caching and prefetching for adaptive video streaming. In IWQoS 2019. 1–10. [167] Matti Siekkinen, Enrico Masala, and Jukka K. Nurminen. 2017. Optimized upload strategies for live scalable video transmission from mobile devices. IEEE TMC 16, 4 (2017), 1059–1072. [168] Lea Skorin-Kapov and Martín Varela. 2012. A multi-dimensional view of QoE: The ARCU model. In MIPRO 2012. 662–666. [169] Ruixing Song, Xuewen Zeng, Xu Wang, and Rui Han. 2019. PREPARE – playback rate and priority adaptive bitrate selection. IEEE Access 7 (2019), 135352–135362. [170] Achraf Souk. 2019. Using Multiple Content Delivery Networks for Video Streaming – Part 1. Technology Blog, AWS. Retrieved 9 June 2025 from https://aws.amazon.com/blogs/networking-and-content-delivery/using-multiplecontent- delivery-networks-for-video-streaming-part-1/ [171] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2020. BOLA: Near-optimal bitrate adaptation for online videos. IEEE/ACM ToN 28, 4 (2020), 1698–1711. [172] Branislav Sredojev, Dragan Samardzija, and Dragan Posarac. 2015. WebRTC technology overview and signaling solution design and implementation. In MIPRO 2015. 1006–1009. [173] Thomas Stockhammer. 2011. Dynamic adaptive streaming over HTTP – standards and design principle. In MMSys 2011. 133–143. [174] Gary J. Sullivan, Jens-Rainer Ohm,Woo-Jin Han, and ThomasWiegand. 2012. Overview of the high efficiency video coding (HEVC) standard. IEEE TCSVT 22, 12 (2012), 1649–1668. [175] Lifeng Sun, Ming Ma, Wen Hu, Haitian Pang, and Zhi Wang. 2017. Beyond 1 million nodes: A crowdsourced video content delivery network. IEEE MultiMedia 24, 3 (2017), 54–63. [176] Liyang Sun, Tongyu Zong, Siquan Wang, Yong Liu, and Yao Wang. 2021. Towards optimal low-latency live video streaming. IEEE/ACM ToN 29, 5 (2021), 2327–2338. [177] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. MIT Press. [178] Wowza Media Systems. 2019. Video Streaming Latency Report. September 2019, Report.Wowza Media Systems. Retrieved from https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf [179] Farzad Tashtarian, Abdelhak Bentaleb, Hadi Amirpour, Sergey Gorinsky, Junchen Jiang, Hermann Hellwagner, and Christian Timmerer. 2024. ARTEMIS: Adaptive bitrate ladder optimization for live video streaming. In NSDI 2024. [180] Farzad Tashtarian, Mahdi Dolati, Daniele Lorenzi, Mojtaba Mozhganfar, Sergey Gorinsky, Ahmad Khonsari, Christian Timmerer, and Hermann Hellwagner. 2025. ALPHAS: Adaptive bitrate ladder optimization for multi-live video streaming. In INFOCOM 2025. 1–10. [181] Pankaj Topiwala, Madhu Krishnan, and Wei Dai. 2018. Performance comparison of VVC, AV1, and HEVC on 8-Bit and 10-Bit content. In Applications of Digital Image Processing XLI, Andrew G. Tescher (Ed.). Vol. 10752, SPIE. [182] Twitch. 2024. Broadcast Guidelines. Retrieved July 17, 2024 from https://help.twitch.tv/s/article/broadcastguidelines? language=en_US. [183] Twitch. 2024. Enhanced Broadcasting with Multiple Encodes. Retrieved July 17, 2024 from https://help.twitch.tv/s/ article/multiple-encodes?language=en_US. [184] Rahul Vanam and Sriram Sethuraman. 2023. Improving Compression Efficiency Using an Encoder-Aware Motion Compensated Temporal Filter. Technology Blog, Amazon Science. Retrieved 9 June 2025 from https://www.amazon.science/publications/improving-compression-efficiency-using-an-encoder-aware-motioncompensated- temporal-filter [185] Roberto Viola, Angel Martin, Javier Morgade, Stefano Masneri, Mikel Zorrilla, Pablo Angueira, and Jon Montalbán. 2021. Predictive CDN selection for video delivery based on LSTM network performance forecasts and cost-effective trade-offs. IEEE Transactions on Broadcasting 67, 1 (2021), 145–158. [186] ChenWang, Andal Jayaseelan, and Hyong Kim. 2018. Comparing cloud content delivery networks for adaptive video streaming. In CLOUD 2018. 686–693. [187] CongWang, Amr Rizk, and Michael Zink. 2016. SQUAD: A spectrum-based quality adaptation for dynamic adaptive streaming over HTTP. In MMSys 2016. 1–12. [188] ZhouWang, Alan C. Bovik, Hamid Sheikh, and Eero Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE TIP 13, 4 (2004), 600–612. [189] Zhihao Wang, Jian Chen, and Steven C. H. Hoi. 2021. Deep learning for image super-resolution: A survey. IEEE TPAMI 43, 10 (2021), 3365–3387. [190] Stefan Wilk, Roger Zimmermann, and Wolfgang Effelsberg. 2016. Leveraging transitions for the upload of usergenerated mobile video. In MoVid 2016. 25–30. [191] Wei-ShiangWung, Guan-Ting Ting, Ruey-Tzer Hsu, Cheng Hsu, Yu-Chien Tsai, CalebWang, Yuan-Tai Liu, Hsi Chen, and Polly Huang. 2021. Twitch’s CDN as an open population ecosystem. In AINTEC 2021. 56–63. [192] Bowei Xu, Hao Chen, and Zhan Ma. 2023. Karma: Adaptive video streaming via causal sequence modeling. In MM 2023. 1527–1535. [193] Mengwei Xu, Tiantu Xu, Yunxin Liu, and Felix Xiaozhu Lin. 2021. Video analytics with zero-streaming cameras. In USENIX ATC 2021. 459–472. [194] Yeting Xu, Xiang Li, Yi Yang, Zhenjie Lin, LimingWang, andWenzhong Li. 2023. FedABR: A personalized federated reinforcement learning approach for adaptive video streaming. In Networking 2023. 1–9. [195] Praveen Kumar Yadav, Arash Shafiei, andWei Tsang Ooi. 2017. QUETRA: A queuing theory approach to DASH rate adaptation. In MM 2017. 1130–1138. [196] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: A randomized experiment in video streaming. In NSDI 2020. 495–511. [197] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. 2018. Neural adaptive content-aware internet video delivery. In OSDI 2018. 645–661. [198] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and Dongsu Han. 2022. NeuroScaler: Neural video enhancement at scale. In SIGCOMM 2022. 795–811. [199] Jiaoyang Yin, Hao Chen, Yiling Xu, Zhan Ma, and Xiaozhong Xu. 2024. Learning accurate network dynamics for enhanced adaptive video streaming. IEEE Transactions on Broadcasting 70, 3 (2024), 808–821. [200] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015.Acontrol-theoretic approach for dynamic adaptive video streaming over HTTP. In SIGCOMM 2015. 325–338. [201] YouTube. 2024. Choose Live Encoder Settings, Bitrates, and Resolutions. YouTube Help. Retrieved July 12, 2024 from https://support.google.com/youtube/answer/2853702?hl=en. [202] Hui Yuan, Chenglin Guo, Ju Liu, Xu Wang, and Sam Kwong. 2017. Motion-homogeneous-based fast transcoding method from H.264/AVC to HEVC. IEEE TMM 19, 7 (2017), 1416–1430. [203] Ahmed H. Zahran, Jason Quinlan,Darijo Raca, Cormac J. Sreenan, Emir Halepovic, Rakesh K. Sinha, Rittwik Jana, and Vijay Gopalakrishnan. 2016. OSCAR: An optimized stall-cautious adaptive bitrate streaming algorithm for mobile networks. In MoVid 2016. 1–6. [204] Ahmed Hamdy Zahran, Darijo Raca, and Cormac J. Sreenan. 2018. ARBITER+: Adaptive rate-based intelligent HTTP streaming algorithm for mobile networks. IEEE TMC 17, 12 (2018), 2716–2728. [205] Aoyang Zhang, Qing Li, Ying Chen, Xiaoteng Ma, Longhao Zou, Yong Jiang, Zhimin Xu, and Gabriel-Miro Muntean. 2021. Video super-resolution and caching – an edge-assisted adaptive video streaming solution. IEEE BC 67, 4 (2021), 799–812. [206] Guanghui Zhang, Jie Zhang, Ke Liu, Jing Guo, Jack Y. B. Lee, Haibo Hu, and Vaneet Aggarwal. 2023. DUASVS: A mobile data saving strategy in short-form video streaming. IEEE TSC 16, 2 (2023), 1066–1078. [207] Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui Luo, Ran Shu, and Xiaolan Liu. 2020. Towards influence of chunk size variation on video streaming in wireless networks. IEEE MC 19, 7 (2020), 1715–1730. [208] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen Jiang. 2021. SENSEI: Aligning video streaming quality with dynamic user sensitivity. In NSDI 2021. 303–320. [209] Xu Zhang, Paul Schmitt, Marshini Chetty, Nick Feamster, and Junchen Jiang. 2022. Enabling personalized video quality optimization with VidHoc. arXiv:2211.15959. Retrieved from https://arxiv.org/abs/2211.15959 [210] Yinjie Zhang, Yuanxing Zhang, YiWu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang Song, and Hu Tuo. 2020. Improving quality of experience by adaptive video streaming with super-resolution. In INFOCOM 2020. 1957–1966. [211] Tiesong Zhao, Qian Liu, and Chang Wen Chen. 2017. QoE in video transmission: A user experience-driven strategy. IEEE COMST 19, 1 (2017), 285–302. [212] Yimin Zhou, Ling Tian, Ce Zhu, Xin Jin, and Yu Sun. 2020. Video coding optimization for virtual reality 360-degree source. IEEE JSTSP 14, 1 (2020), 118–129. [213] Shiping Zhu and Ziyao Xu. 2017. Spatiotemporal visual saliency guided perceptual high efficiency video coding with neural network. Neurocomputing 275 (2017), 511–522. [214] Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, and Sergio Mena de la Cruz. 2020. Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media. February 2020, RFC 8698, IETF. Retrieved 9 June 2025 from https://datatracker.ietf.org/doc/rfc8698/ [215] Yi Zhu, Sharath Chandra Guntuku, Weisi Lin, Gheorghita Ghinea, and Judith A. Redi. 2018. Measuring individual video QoE: A survey, and proposal for future directions using social media. ACM TOMM 14, 2s, article 30 (2018), 1–24. [216] Behrouz Zolfaghari, Gautam Srivastava, Swapnoneel Roy,Hamid R. Nemati, Fatemeh Afghah, Takeshi Koshiba, Abolfazl Razi, Khodakhast Bibak, Pinaki Mitra, and Brijesh Kumar Rai. 2020. Content delivery networks: State of the art, trends, and future roadmap. ACM CSUR 53, 2 (2020), 1–34. [217] Xutong Zuo, Yishu Li, Mohan Xu, Wei Tsang Ooi, Jiangchuan Liu, Junchen Jiang, Xinggong Zhang, Kai Zheng, and Yong Cui. 2022. Bandwidth-efficient multi-video prefetching for short video streaming. In MM 2022. 7084–7088. [218] Xutong Zuo, Jiayu Yang, MoweiWang, and Yong Cui. 2022. Adaptive bitrate with user-level QoE preference for video streaming. In INFOCOM 2022. 1279–1288. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12761/1939 | |
dc.description.abstract | Remaining a dominant force in Internet traffic, video streaming captivates end users, service providers, and researchers. This article takes a pragmatic approach to reviewing recent advances in the field by focusing on the prevalent streaming paradigm that involves delivering long-form two-dimensional videos over the best-effort Internet with client-side adaptive bitrate (ABR) algorithms and assistance from content delivery networks (CDNs). To enhance accessibility, we supplement the survey with tutorial material. Unlike existing surveys that offer fragmented views, our work provides a holistic perspective on the entire end-to-end streaming pipeline, from video capture by a camera-equipped device to playback by the end user. Our novel perspective covers the ingestion, processing, and distribution stages of the pipeline and addresses key challenges such as video compression, upload, transcoding, ABR algorithms, CDN support, and quality of experience. We review over 200 papers and classify streaming designs by problem-solving methodology, whether based on intuition, theory, or machine learning. The survey further refines these methodology-based categories and characterizes each design by additional traits such as compatible codecs. We connect the reviewed research to real-world applications by discussing the practices of commercial streaming platforms. Finally, the survey highlights prominent current trends and outlines future directions in video streaming. | es |
dc.description.sponsorship | MICIU/AEI/10.13039/ 501100011033, ERDF, and EU | es |
dc.language.iso | eng | es |
dc.publisher | ACM | es |
dc.title | An End-to-End Pipeline Perspective on Video Streaming in Best-Effort Networks: A Survey and Tutorial | es |
dc.type | journal article | es |
dc.journal.title | ACM Computing Surveys | es |
dc.type.hasVersion | AM | es |
dc.rights.accessRights | open access | es |
dc.volume.number | 57 | es |
dc.issue.number | 12 | es |
dc.identifier.doi | 10.1145/3742472 | es |
dc.page.final | 47 | es |
dc.page.initial | 1 | es |
dc.relation.projectID | PID2022-140560OB-I00 | es |
dc.relation.projectName | DRONAC (Distributed Reliable Objects for Networked Applications Coordination) | es |
dc.subject.keyword | video streaming | es |
dc.subject.keyword | end-to-end pipeline | es |
dc.subject.keyword | ingestion | es |
dc.subject.keyword | processing | es |
dc.subject.keyword | distribution | es |
dc.subject.keyword | problem-solving methodology | es |
dc.subject.keyword | intuition | es |
dc.subject.keyword | theory | es |
dc.subject.keyword | machine learning | es |
dc.subject.keyword | coding | es |
dc.subject.keyword | adaptive bitrate algorithm | es |
dc.subject.keyword | content delivery network | es |
dc.subject.keyword | quality of experience | es |
dc.description.refereed | TRUE | es |
dc.description.status | pub | es |