• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpretable Outlier and Anomaly Detection for Mobile Networks from Small Tabular Data

Compartir
Ficheros
Conference paper (3.218Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1935
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Ramirez, Juan Marcos; Rojo, Pablo; Mancuso, Vincenzo; Fernández Anta, Antonio
Fecha
2025-05-26
Resumen
Outliers and anomalies in mobile networks refer to significant deviations of the Key Performance Indicator (KPI) from expected values, often degrading user experience. Therefore, detecting and understanding these atypical events is crucial for troubleshooting. To monitor network performance, operators continuously collect data using different testing strategies. One such strategy involves drive-tests that capture datasets with many parameters but limited sample sizes, rendering them unsuitable for deep learning approaches, which require large datasets for effective learning. This paper proposes ROAD (Interpretable Outlier and Anomaly Detection), an unsupervised machine learning methodology designed to detect and understand atypical operational scenarios in mobile networks from drive-tests. This methodology comprises an unsupervised detection stage and introduces an interpretability module that is applied separately to outliers and anomalies. The interpretability module identifies variables and samples associated with atypical events, quantifies the degree of similarity between each variable and the anomaly pattern, and builds a decision tree to reveal the ranges of variables describing atypical scenarios. We implemented the methodology in software and evaluated its performance using real drive-test data. Our method provides high accuracy in detecting outliers and anomalies separately, while reducing the identification of false positives (recall) between 39\% and 63\% compared to an existing explainable detection method.
Compartir
Ficheros
Conference paper (3.218Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1935
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!