• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

CHRONOPROF: Profiling Time Series Forecasters and Classifiers in Mobile Networks with Explainable AI

Compartir
Ficheros
xai-chronoprof-wowmom-dspace.pdf (1.807Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1918
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fernández, Pablo; Bravo Aramburu, Iñaki; Kamath, Anirudh; Fiandrino, Claudio; Widmer, Joerg
Fecha
2025-05
Resumen
The next-generation of mobile networks will increasingly rely on Artificial Intelligence (AI)/Machine Learning (ML) for effective network automation, resource orchestration and management. This translates into performing classification and regression tasks on time series data. Unfortunately, the existing AI/ML models are inherently complex and hard to interpret, which hinders their deployment in production networks. Further, the vast majority of the existing EXplainable Artificial Intelligence (XAI) techniques are either primarily conceived for computer vision and natural language processing and thus fail to provide useful insights. In this paper, we take the research on XAI for time series classification and regression tasks one step further proposing ChronoProf, a new tool that builds on legacy XAI techniques. By creating a linearized version of the original model for different observations, ChronoProf provides insights about the dynamic changes in the model decision-making process across observations and is agnostic to the influence of feature magnitude, which is a key limitation of legacy explainers. Thus, ChronoProf highlights the real influence of model parameters on the output. Our extensive evaluation with real-world mobile traffic traces shows that ChronoProf is able to measure the feature importance, especially in classification tasks where linearized explanations across observations show high consistency.
Compartir
Ficheros
xai-chronoprof-wowmom-dspace.pdf (1.807Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1918
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!