• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

AIChronoLens: AI/ML Explainability for Time Series Forecasting in Mobile Networks

Compartir
Ficheros
xai-aichronolens_tmc_dspace.pdf (5.885Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1917
DOI: 10.1109/TMC.2025.3554035
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fernández, Pablo; Fiandrino, Claudio; Perez Gomez, Eloy; Mohammadalizadeh, Hossein; Fiore, Marco; Widmer, Joerg
Fecha
2025-03
Resumen
Forecasting is increasingly considered a fundamental enabler for the management of next-generation mobile networks. While deep neural networks excel at short- and long-term forecasting, their complexity hinders interpretability, a crucial factor for production deployment. The existing EXplainable Artificial Intelligence (XAI) techniques, primarily designed for computer vision and natural language processing, struggle with time series data due to their lack of understanding of temporal characteristics of the input data. In this paper, we take the research on XAI for time series forecasting one step further by proposing AIChronoLens, a new tool that links legacy XAI explanations with the temporal properties of the input. AIChronoLens allows diving deep into the behavior of time series predictors and spotting, among other aspects, the hidden causes of forecast errors. We show that AIChronoLens’s output can be utilized for meta-learning to predict when the original time series forecasting model makes errors and fix them in advance, thereby improving the accuracy of the predictors. Extensive evaluations with real-world mobile traffic traces pinpoint model behaviors that would not be possible to identify otherwise and show how model performance can be improved by 32% upon re-training and by up to 39% with meta-learning.
Compartir
Ficheros
xai-aichronolens_tmc_dspace.pdf (5.885Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1917
DOI: 10.1109/TMC.2025.3554035
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!