Mostrar el registro sencillo del ítem

dc.contributor.authorMoghadas Gholian, Serly 
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorWidmer, Joerg 
dc.date.accessioned2025-02-28T13:23:15Z
dc.date.available2025-02-28T13:23:15Z
dc.date.issued2025-05
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1908
dc.description.abstractThe exponential growth of mobile data traffic demands efficient and scalable forecasting methods to optimize network performance. Traditional approaches, like training individual models for each Base Station ( BS) are computationally prohibitive for large-scale production deployments. In this paper, we propose a scalable Deep Neural Networks (DNN) training framework for mobile network traffic forecasting that reduces input redundancy and computational overhead. We minimize the number of input probes (traffic monitors at Base Stations (BSs)) by grouping BS s with temporal similarity using K-means clustering with Dynamic Time Warping (DTW ) as the distance metric. Within each cluster, we train a DNN model, selecting a subset of BSs as inputs to predict future traffic demand for all BSs in that cluster. To further optimize input selection, we leverage the well-known EXplainable Artificial Intelligence ( XAI) technique, LayeR-wise backPropagation ( LRP) to identify the most influential BS s within each cluster. This makes it possible to reduce the number of required probes while maintaining high prediction accuracy. To validate our newly proposed framework, we conduct experiments on two real-world mobile traffic datasets. Specifically, our approach achieves competitive accuracy while reducing the total number of input probes by approximately 81% compared to state-of-the-art predictors.es
dc.language.isoenges
dc.titleA Scalable DNN Training Framework for Traffic Forecasting in Mobile Networkses
dc.typeconference objectes
dc.conference.date26–29 May 2025es
dc.conference.placeBarcelona, Spaines
dc.conference.titleIEEE International Conference on Machine Learning for Communication and Networking*
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.page.final7es
dc.page.initial1es
dc.relation.projectIDMinisterio de Ciencia, Innovación y Universidadeses
dc.relation.projectIDMinisterio de Asusntos Económicos y Transformación Digitales
dc.relation.projectNamebRAIN (Explainable and robust AI for integration in next generation networked systems)es
dc.relation.projectNameMAP-6G (Machine Learning-based Privacy Preserving Analytics for 6G Mobile Networks)es
dc.relation.projectNameRISC-6G (Reconfigurable Intelligent Surfaces and Low-power Technologies for Communication and Sensing in 6G Mobile Networks)es
dc.relation.projectNameRamón y Cajales
dc.subject.keywordSpatio-temporal traffic forecastinges
dc.subject.keywordcellular networkses
dc.subject.keyworddeep learninges
dc.subject.keywordclusteringes
dc.subject.keywordexplainable AIes
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem