Mostrar el registro sencillo del ítem

dc.contributor.authorBütün, Beyza 
dc.contributor.authorde Andrés Hernández, David 
dc.contributor.authorAguilar, Jose 
dc.contributor.authorGucciardo, Michele 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2025-02-21T16:01:30Z
dc.date.available2025-02-21T16:01:30Z
dc.date.issued2025-05
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1905
dc.description.abstractDeploying Machine Learning (ML) models in the user plane enables low-latency and scalable in-network inference, but integrating them into programmable devices faces stringent constraints in terms of memory resources and computing capabilities. In this demo, we show how the newly proposed DUNE, a novel framework for distributed user-plane inference across multiple programmable network devices by automating the decomposition of large ML models into smaller sub-models, mitigates the limitations of traditional monolithic ML designs. We run experiments on a testbed with Intel Tofino switches using measurement data and show how DUNE not only improves the accuracy that the traditional single-device monolithic approach gets but also maintains a comparable per-switch latency.es
dc.language.isoenges
dc.titleDemonstrating Distributed Inference in the User Plane with DUNEes
dc.typeconference objectes
dc.conference.date19-22 May 2025es
dc.conference.placeLondon, United Kingdomes
dc.conference.titleIEEE International Conference on Computer Communications *
dc.event.typeconferencees
dc.pres.typedemoes
dc.rights.accessRightsopen accesses
dc.acronymINFOCOM*
dc.rankA**
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem