Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-Durive, Orlando E. 
dc.contributor.authorSotirios Bakirtzis, Stefanos
dc.contributor.authorZiemlicki, Cezary
dc.contributor.authorFiore, Marco 
dc.date.accessioned2025-02-21T16:00:23Z
dc.date.available2025-02-21T16:00:23Z
dc.date.issued2025-05-19
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1904
dc.description.abstractMetadata geolocation, i.e., mapping information collected at a cellular Base Station (BS) to the geographical area it covers, is a central operation in producing statistics from mobile network measurements. This task requires modeling the probability that a device attached to a BS is at a specific location, and it is currently accomplished via simplistic approximations based on Voronoi tessellations. However, Voronoi cells exhibit poor accuracy compared to real-world geolocation data, which can reduce the reliability of downstream research pipelines. To overcome this limitation, DEEPMEND proposes a new data-driven approach relying on a teacher-student paradigm that combines probabilistic inference and deep learning. Similarly to other benchmarks, DEEPMEND can produce geolocation maps using only the BS positions, yielding a 56% accuracy gain compared to Voronoi tessellations. Our demonstrator will show visual and qualitative comparisons between DEEPMEND and several competitor approaches, allowing users to explore BS deployments from different geographical regions and operators.es
dc.description.sponsorshipComunidad de Madrides
dc.description.sponsorshipEuropean Uniones
dc.language.isoenges
dc.titleDemonstrating Deep Learning-based Spatial Diffusiones
dc.typeconference objectes
dc.conference.date19–22 May 2025es
dc.conference.placeLondon, United Kingdomes
dc.conference.titleIEEE Conference on Computer Communications Workshops*
dc.event.typeworkshopes
dc.pres.typedemoes
dc.type.hasVersionVoRes
dc.rights.accessRightsopen accesses
dc.relation.projectID2019-T1/TIC-16037es
dc.relation.projectID2023-5A/TIC-28944es
dc.relation.projectIDGrant no. 101139270es
dc.relation.projectNameNetSense (Network Sensing)es
dc.relation.projectNameNetSense (Network Sensing)es
dc.relation.projectNameORIGAMI (Optimized Resource Integration and Global Architecture for Mobile Infrastructure for 6G)es
dc.description.refereedTRUEes
dc.description.statusinpresses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem