• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

PCP-YOLO: an approach integrating non-deep feature enhancement module and polarized self-attention for small object detection of multiscale defects

Compartir
Ficheros
Artículo principal (10.54Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1903
DOI: 10.1007/s11760-024-03666-4
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Wang, Penglin; Shi, Donghui; Aguilar, Jose
Fecha
2025-02-15
Resumen
The detection of small objects within multiscale defects amidst complex background interference presents a formidable challenge in industrial defect detection. To address this issue and achieve precise and expeditious identification in industrial defect detection, this study proposes PCP-YOLO, a novel network that incorporates a non-deep feature extraction module and a polarized filtering feature fusion module for small object defect detection. Initially, YOLOv8 is employed as the foundational model. Subsequently, a lightweight, non-deep feature extraction module, PotentNet, is designed and integrated into the backbone network. In the neck network, a feature fusion module incorporating polarized self-attention, C2f_ParallelPolarized, has been developed. Finally, CARAFE is utilized to substitute the original upsampling module in the neck network. The efficacy of this approach has been rigorously evaluated using three datasets: the publicly available NEU-DET and PKU-PCB datasets, and the real-world industrial dataset GC10-DET. The mAP@0.5 values achieved are 79.4%, 96.1%, and 77.6%, significantly outperforming other detection methods. The method also has a fast inference speed. These results demonstrate that PCP-YOLO exhibits substantial potential for rapid and accurate defect detection.
Compartir
Ficheros
Artículo principal (10.54Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1903
DOI: 10.1007/s11760-024-03666-4
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!