• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interactive Explanation and Steering of DRL Agents for Massive MIMO Scheduling with SYMBXRL

Compartir
Ficheros
1571107869 final.pdf (663.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1900
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Duttagupta, Abhishek; Jabbari, MohammadErfan; Fiandrino, Claudio; Fiore, Marco; Widmer, Joerg
Fecha
2025-05
Resumen
Future 6th-generation (6G) mobile networks will increasingly rely on Deep Reinforcement Learning (DRL) for real-time decision optimization. However, DRL’s opaque nature hinders its adoption, as operators need to understand and control these complex systems, necessitating explainability tools to reveal the model’s reasoning. This paper demonstrates SYMBXRL, an EXplainable Reinforcement Learning ( XRL) framework that translates DRL’s internal logic into human-interpretable symbolic representations and enables intent-based action steering. We introduce a novel interactive dashboard that enhances transparency and control by providing a real-time view of the DRL agent’s operation. Our demonstration showcases how SYM- BXRL i) generates human-readable explanations using symbolic Artificial Intelligence (AI) and knowledge graphs, (ii) enables operator-defined, intent-based action steering for performance improvement, and (iii) provides real-time visualization of agent behavior and network metrics. We demonstrate SYMBXRL using a DRL agent that schedules users in a Massive MIMO scenario, leveraging real-world channel measurements from a 64-antenna testbed to maximize spectral efficiency while maintaining fairness.
Compartir
Ficheros
1571107869 final.pdf (663.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1900
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!