Mostrar el registro sencillo del ítem

dc.contributor.authorAkem, Aristide Tanyi-Jong 
dc.date.accessioned2025-01-14T12:19:14Z
dc.date.available2025-01-14T12:19:14Z
dc.date.issued2025-01-11
dc.identifier.citation[1] C. Kilinc et al. 5G development: Automation and the role of artificial intelligence. Wiley 5G Ref, 5 2020. [2] A. A. Gebremariam et al. Applications of artificial intelligence and machine learning in the area of SDN and NFV: A survey. SSD, 2019. [3] K. He et al. Measuring control plane latency in SDN-enabled switches. In SOSR. ACM, 2015. [4] P. Lincoln et al. From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality. IEEE Trans. Vis. Comput. Graph., 22(4):1367–1376, 2016. [5] Tofino Programmable Ethernet Switch ASIC. https://www.intel.com/content/www/us/en/ products/details/network-io/ intelligent-fabric-processors/tofino.html. [6] NVIDIA BlueField Networking Platform. https://www.nvidia.com/en-us/networking/ products/data-processing-unit/. [7] P. Bosshart et al. P4: Programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, jul 2014. [8] A. Sapio et al. In-network computation is a dumb idea whose time has come. In HotNets, 2017. [9] N. Feamster and J. Rexford. Why (and how) networks should run themselves. CoRR, abs/1710.11583, 2017. [10] L. Grinsztajn et al. Why do tree-based models still outperform deep learning on typical tabular data? In NeurIPS 2022, November 2022. [11] Netronome. Netronome Agilio SmartNICs. [12] R. Parizotto et al. Offloading machine learning to programmable data planes: A systematic survey. ACM Comput. Surv., jun 2023. [13] C. Zheng et al. In-network machine learning using programmable network devices: A survey. IEEE Commun. Surv. Tutor., 2023. [14] A. T.-J. Akem. User-Plane Algorithms for Stateless and Stateful Inference in Programmable Networks. PhD thesis, Universidad Carlos III de Madrid, Spain, 2024. https://hdl.handle.net/20.500.12761/1853. [15] Wireshark. https://www.wireshark.org/tshark. [16] F. Pedregosa et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 2011. [17] Bob Lantz et al. Mininet: An instant virtual network on your laptop. http://mininet.org/, 2017. [18] A. Turner and F. Klassen. Tcpreplay. https://tcpreplay.appneta.com/. [19] P. Emmerich et al. Moongen: A scriptable high-speed packet generator. In IMC, NY, USA, 2015. [20] A. T.-J. Akem et al. Ultra-low latency user-plane cyberattack detection in sdn-based smart grids. In ACM e-Energy, pp. 676–682, 2024. [21] M. Hayes et al. Scalable architecture for SDN traffic classification. IEEE Systems Journal, 12, 2018. [22] C. Busse-Grawitz et al. pForest: In-network inference with random forests. CoRR, abs/1909.05680, 2019. [23] J. Lee and K. P. Singh. SwitchTree: in-network computing and traffic analyses with random forests. Neural. Comput. Appl., 2020. [24] X. Zhang et al. pHeavy: Predicting heavy flows in the programmable data plane. IEEE Trans. Netw. Service Manag., 18(4):4353–4364, 2021. [25] A. T.-J. Akem et al. Flowrest: Practical flow-level inference in programmable switches with random forests. In IEEE INFOCOM, 2023. [26] A. T.-J. Akem et al. Encrypted traffic classification at line rate in programmable switches with machine learning. In IEEE/IFIP NOMS, 2024. [27] G. Zhou et al. An efficient design of intelligent network data plane. In USENIX Security, 2023. [28] A. T.-J. Akem et al. Jewel: Resource-efficient joint packet and flow level inference in programmable switches. In IEEE INFOCOM, 2024.es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1894
dc.description.abstractIn the last decade, the complexity of networks has increased significantly to accommodate the rise of innovative applications. This growing complexity has rendered traditional human-in-the-loop network management approaches inadequate, necessitating greater automation and flexibility in managing these networks. The introduction of Software-Defined Networking (SDN) with a programmable control plane marked a major advancement in this direction, enabling a wide range of network automation applications to be executed within the SDN control plane.es
dc.language.isoenges
dc.publisherACMes
dc.titleUser-Plane Algorithms for Stateless and Stateful Inference in Programmable Networkses
dc.typemagazinees
dc.journal.titleACM IGMETRICS Performance Evaluation Reviewes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.volume.number52es
dc.issue.number3es
dc.identifier.doi10.1145/3712170.3712177es
dc.page.final18es
dc.page.initial15es
dc.description.refereedFALSEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem