• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

SYMBXRL: Symbolic Explainable Deep Reinforcement Learning for Mobile Networks

Compartir
Ficheros
XAI_SymbXRL_Dspace.pdf (1.193Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1888
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Duttagupta, Abhishek; Jabbari, MohammadErfan; Fiandrino, Claudio; Fiore, Marco; Widmer, Joerg
Fecha
2025-05
Resumen
The operation of future 6th-generation (6G) mobile networks will increasingly rely on the ability of Deep Reinforcement Learning (DRL) to optimize network decisions in real-time. DRL yields demonstrated efficacy in various resource allocation problems, such as joint decisions on user scheduling and antenna allocation or simultaneous control of computing resources and modulation. However, trained DRL agents are closed-boxes and inherently difficult to explain, which hinders their adoption in production settings. In this paper, we make a step towards removing this critical barrier by presenting SYMBXRL, a novel technique for EXplainable Reinforcement Learning (XRL) that synthesizes human-interpretable explanations for DRL agents. SYMBXRL leverages symbolic AI to produce explanations where key concepts and their relationships are described via intuitive symbols and rules; coupling such a representation with logical reasoning exposes the decision process of DRL agents and offers more comprehensible descriptions of their behaviors compared to existing approaches. We validate SYMBXRL in practical network management use cases supported by DRL, proving that it not only improves the semantics of the explanations but also paves the way for explicit agent control: for instance, it enables intent-based programmatic action steering that improves by 12% the median cumulative reward over a pure DRL solution.
Compartir
Ficheros
XAI_SymbXRL_Dspace.pdf (1.193Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1888
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!