• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques

Compartir
Ficheros
Paper (902.5Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1879
ISSN: 1472-6947
DOI: 10.1186/s12911-024-02810-x
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Hoyos, William; Hoyos, Kenia; Ruiz, Rander; Aguilar, Jose
Fecha
2024-12-15
Resumen
Background Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explainable analysis of DM by combining sociodemographic and clinical data with statistical and artificial intelligence (AI) techniques. Methods Leveraging a small dataset that includes sociodemographic and clinical profiles of diabetic and non-diabetic individuals, we employed a diverse set of statistical and AI models for predictive purposes and assessment of DM risk factors. The statistical tests used were Student’s t-test and Chi-square, while the AI techniques were fuzzy cognitive maps (FCM), artificial neural networks (ANN), support vector machines (SVM), and XGBoost. Results Our statistical models facilitated an in-depth exploration of variable associations, while the resulting AI models demonstrated exceptional efficacy in DM classification. In particular, the XGBoost model showed superior performance in accuracy, sensitivity and specificity with values of 1 for each of these metrics. On the other hand, the FCM stood out for its explainability capabilities by allowing an analysis of the variables involved in the prediction using scenario-based simulations. Conclusions An integrated analysis of DM using a variety of methodologies is critical for timely detection of the disease and informed clinical decision-making.
Compartir
Ficheros
Paper (902.5Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1879
ISSN: 1472-6947
DOI: 10.1186/s12911-024-02810-x
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!