• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of Explainability Analysis Methods for the LAMDA Family Algorithms in Classification and Clustering Tasks

Compartir
Ficheros
IEEEExplanaibility1.pdf (1.051Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1871
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Quintero, Carlos; Aguilar, Jose; García, Rodrigo
Fecha
2024-09-01
Resumen
Explainability analysis is a very relevant topic today, due to the interest of allowing the interpretability of machine learning models. In this work, we carry out an in-depth study of explainability analysis for the algorithms of the LAMDA (Learning Algorithm for Multivariate Data Analysis) family that have been used in the context of supervised and unsupervised learning. In particular, for the case of classification the LAMDA-HAD algorithm, and for the case of clustering the LAMDA-RD algorithm. For the explainability analysis, two classic methods from the explainability area were considered, LIME (Local Interpretable Model-Agnostic Explanation) and Feature Importance, and another one developed by us for the LAMDA family. In particular, our explainability method for LAMDA allows measuring the importance of each characteristic in a general way, and for each cluster. In general, the results obtained in both cases (classification and clustering) are satisfactory, especially because our explainability method for LAMDA gives an explainability similar to the traditional ones, but in addition, it can be given by cluster.
Compartir
Ficheros
IEEEExplanaibility1.pdf (1.051Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1871
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!