• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeepMEND: Reliable and Scalable Network Metadata Geolocation from Base Station Positions

Compartir
Ficheros
DeepMEND_SECON.pdf (6.050Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1868
DOI: 10.1109/SECON64284.2024.10934920
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Martínez-Durive, Orlando E.; Bakirtzis, Stefanos; Ziemlicki, Cezary; Zhang, Jie; James Wassell, Ian; Fiore, Marco
Fecha
2024-10-18
Resumen
Metadata geolocation, i.e., mapping information collected at a cellular Base Station (BS) to the geographical area it covers, is a central operation in the production of statistics from mobile network measurements. This task requires modeling the probability that a device attached to a BS is at a specific location, and is presently addressed with simplistic approximations based on Voronoi tessellations. As we show, Voronoi cells exhibit poor accuracy compared to real-world geolocation data, which can, in turn, reduce the reliability of research results. We propose a new approach for data-driven metadata geolocation based on a teacher-student paradigm that combines probabilistic inference and deep learning. Our DEEPMEND model: (i) only needs BS positions as input, exactly like Voronoi tessellations; (ii) produces geolocation maps that are 56% and 33% more accurate than legacy Voronoi and their state-of-the-art VoronoiBoost calibration, respectively; and, (iii) generates geolocation data for thousands of BSs in minutes. We assess its accuracy against real-world multi-city geolocation data of 5, 947 BSs provided by a network operator, and demonstrate the impact of its enhanced metadata geolocation on two applications use cases
Compartir
Ficheros
DeepMEND_SECON.pdf (6.050Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1868
DOI: 10.1109/SECON64284.2024.10934920
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!