Show simple item record

dc.contributor.authorPeroni, Leonardo 
dc.contributor.authorGorinsky, Sergey 
dc.contributor.authorTashtarian, Farzad
dc.date.accessioned2024-10-29T10:53:18Z
dc.date.available2024-10-29T10:53:18Z
dc.date.issued2024-11-29
dc.identifier.citation[1] A. Nikravesh, D. K. Hong, Q. A. Chen, H. V. Madhyastha, and Z. M. Mao, “QoE Inference Without Application Control,” in Internet-QoE, 2016. [2] M. Apostolaki, A. Singla, and L. Vanbever, “Performance-Driven Internet Path Selection,” in SOSR, 2021. [3] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol: Design and Internet-Scale Deployment,” in SIGCOMM, 2017. [4] S. Xu, S. Sen, and Z. M. Mao, “CSI: Inferring Mobile ABR Video Adaptation Behavior Under HTTPS and QUIC,” in EuroSys, 2020. [5] Y. Zhao, H. Wu, L. Chen, S. Liu, G. Cheng, and X. Hu, “Identifying Video Resolution from Encrypted QUIC Streams in Segment-Combined Transmission Scenarios,” in NOSSDAV, 2024. [6] M. H. Mazhar and Z. Shafiq, “Real-Time Video Quality of Experience Monitoring for HTTPS and QUIC,” in INFOCOM, 2018. [7] C. Gutterman, K. Guo, S. Arora, T. Gilliland, X. Wang, L. Wu, E. Katz- Bassett, and G. Zussman, “Requet: Real-Time QoE Metric Detection for Encrypted YouTube Traffic,” ACM TOMM, vol. 16, no. 2s, pp. 1–28, 2020. [8] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, “DeepQoE: Real- Time Measurement of Video QoE from Encrypted Traffic with Deep Learning,” in IWQoS, 2020. [9] S.Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “ViCrypt to the Rescue: Real-Time, Machine-Learning-Driven Video-QoE Monitoring for Encrypted Streaming Traffic,” IEEE TNSM, vol. 17, no. 4, pp. 2007– 2023, 2020. [10] T. Sharma, T. Mangla, A. Gupta, J. Jiang, and N. Feamster, “Estimating WebRTC Video QoE Metrics Without Using Application Headers,” in IMC, 2023. [11] Tisa-Selma, A. Bentaleb, and S. Harous, “Inferring Quality of Experience for Adaptive Video Streaming over HTTPS and QUIC,” in IWCMC, 2020. [12] P. Gigis, M. Calder, L. Manassakis, G. Nomikos, V. Kotronis, X. Dimitropoulos, E. Katz-Bassett, and G. Smaragdakis, “Seven Years in the Life of Hypergiants’ Off-Nets,” in SIGCOMM, 2021. [13] Y. Zhao, A. Saeed, M. H. Ammar, and E. W. Zegura, “Unison: Enabling Content Provider/ISP Collaboration Using a vSwitch Abstraction,” in ICNP, 2019. [14] C. Munteanu, O. Gasser, I. Poese, G. Smaragdakis, and A. Feldmann, “Enabling Multi-Hop ISP-Hypergiant Collaboration,” in ANRW, 2023. [15] V. Stocker, G. Smaragdakis, and W. Lehr, “The State of Network Neutrality Regulation,” SIGCOMM CCR, vol. 50, no. 1, pp. 45–59, 2020. [16] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle in Cyberspace: Defining Tomorrow’s Internet,” IEEE/ACM ToN, vol. 13, no. 3, pp. 462–475, 2005. [17] Y. Yiakoumis, S. Katti, and N. McKeown, “Neutral Net Neutrality,” in SIGCOMM, 2016. [18] S. Shalunov, R. Wendy, R. Woundy, S. Previdi, S. Kiesel, R. Alimi, R. Penno, and Y. R. Yang, “Application-Layer Traffic Optimization (ALTO) Protocol,” IETF RFC 7285, 2014. [19] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, “P4P: Provider Portal for Applications,” in SIGCOMM, 2008. [20] L. Gao, “On Inferring Autonomous System Relationships in the Internet,” IEEE/ACM ToN, vol. 9, no. 6, pp. 733–745, 2001. [21] S. Hasan and S. Gorinsky, “Obscure Giants: Detecting the Provider-Free ASes,” in IFIP Networking, 2012. [22] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, and V. Vazirani, “How Many Tiers? Pricing in the Internet Transit Market,” in SIGCOMM, 2011. [23] V. Giotsas, G. Smaragdakis, B. Huffaker, M. Luckie, and k. claffy, “Mapping Peering Interconnections to a Facility,” in CoNEXT, 2015. [24] I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois, “Remote Peering: More Peering without Internet Flattening,” in CoNEXT, 2014. [25] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger, “Anatomy of a Large European IXP,” in SIGCOMM, 2012. [26] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach. Morgan Kaufmann, 2021. [27] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely Outsourcing Middleboxes to the Cloud,” in NSDI, 2016. [28] Amazon Web Services, “Amazon EC2,” https://aws.amazon.com/ec2, 2024. [29] Google LLC YouTube, “YouTube Live,” https://www.youtube.com/live, 2024. [30] K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The Addition of Explicit Congestion Notification (ECN) to IP,” IETF RFC 3168, 2001. [31] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring for ISPs,” in IMIS, 2012. [32] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in End-to-End Congestion Control,” in SIGCOMM, 2022. [33] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open- Source High-Speed Deep Packet Inspection,” in IWCMC, 2014. [34] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, and J. M. Smith, “DeepMatch: Practical Deep Packet Inspection in the Data Plane Using Network Processors,” in CoNEXT, 2020. [35] T. Tran, D. Gageot, C. Neumann, G. Bichot, A. Tlili, K. Boutiba, and A. Ksentini, “On the Benefits and Caveats of Exploiting Quality on Demand Network APIs for Video Streaming,” in NOSSDAV, 2024. [36] J. A. Clark, “pillow 10.3.0,” Python Sofware Foundation, https://pypi.org/project/pillow/, 2024. [37] A. Sweigart, “Pyautogui 0.9.54,” Python Software Foundation, https://pypi.org/project/PyAutoGUI/, 2024. [38] KimiNewt, “pyshark 0.6,” Python Software Foundation, https://pypi.org/project/pyshark/, 2024. [39] L. Peroni, S. Gorinsky, and F. Tashtarian, “IQN and YouStall: Code and Experimental Configurations,” GitHub, https://github.com/Leo-rojo/IQN_YouStall_Code_CloudNet_2024, 2024. [40] OpenVPN Inc., “OpenVPN,” https://openvpn.net/, 2024. [41] T. Hombashi, “tcconfig 0.7.0a1,” Python Sofware Foundation, https://pypi.org/project/tcconfig/0.7.0a1/, 2024. [42] J. Liu, D. Lerner, J. Chung, U. Paul, A. Gupta, and E. Belding, “Watching Stars in Pixels: The Interplay of Traffic Shaping and YouTube Streaming QoE over GEO Satellite Networks,” in PAM, 2024. [43] Python Software Foundation, “Selenium 4.22.0,” https://pypi.org/project/selenium/, 2024. [44] G. Rodola, “psutil 6.0.0,” Python Software Foundation, https://pypi.org/project/psutil/, 2024. [45] M. Podlesny and S. Gorinsky, “Leveraging the Rate-Delay Trade-Off for Service Differentiation in Multi-Provider Networks,” IEEE JSAC, vol. 29, no. 5, pp. 997–1008, 2011. [46] S. Xu, E. Petajan, S. Sen, and Z. M. Mao, “What You See Is What You Get: Measure ABR Video Streaming QoE via On-Device Screen Recording,” in NOSSDAV, 2020. [47] C. Alvarez and K. Argyraki, “Learning a QoE Metric from Social Media and Gaming Footage,” in HotNets, 2023. [48] I. Bartolec, “Performance Estimation of Encrypted Video Streaming in Light of End-User Playback-Related Interactions,” in MMSys, 2021. [49] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF RFC 4271, 2006.es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1867
dc.description.abstractWhile ISPs (Internet service providers) strive to improve QoE (quality of experience) for end users, end-to-end traffic encryption by OTT (over-the-top) providers undermines independent inference of QoE by an ISP. Due to the economic and technological complexity of the modern Internet, ISP-side QoE inference based on OTT assistance or out-of-band signaling sees low adoption. This paper presents IQN (in-band quality notification), a novel mechanism for signaling QoE impairments from an automated agent on the end-user device to the server-to-client ISP responsible for QoE-impairing congestion. Compatible with multi-ISP paths, asymmetric routing, and other Internet realities, IQN does not require OTT support and induces the OTT server to emit distinctive packet patterns that encode QoE information, enabling ISPs to infer QoE by monitoring these patterns in network traffic. We develop a prototype system, YouStall, which applies IQN signaling to ISP-side inference of YouTube stalls. Cloud-based experiments with YouStall on YouTube Live streams validate IQN’s feasibility and effectiveness, demonstrating its potential for accurate user-assisted ISP-side QoE inference from encrypted traffic in real Internet environments.es
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 and ERDF, EUes
dc.description.sponsorshipAustrian Federal Ministry for Digital and Economic Affairses
dc.description.sponsorshipNational Foundation for Research, Technology and Development, Austriaes
dc.description.sponsorshipChristian Doppler Research Associationes
dc.language.isoenges
dc.titleIn-Band Quality Notification from Users to ISPses
dc.typeconference objectes
dc.conference.date27-29 November 2024es
dc.conference.placeRio de Janeiro, Braziles
dc.conference.titleIEEE International Conference on Cloud Networking*
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.page.final7es
dc.page.initial1es
dc.relation.projectIDPID2022-40560OB-I00es
dc.relation.projectNameDRONAC (Distributed Reliable Objects for Networked Applications Coordination)es
dc.relation.projectNameATHENA (AdapTive Streaming over HTTP and Emerging Networked MultimediA Services)es
dc.subject.keywordEnd useres
dc.subject.keywordQoEes
dc.subject.keywordISPes
dc.subject.keywordQoE-impairment inferencees
dc.subject.keywordOTT provideres
dc.subject.keywordend-to-end traffic encryptiones
dc.subject.keywordin-band signalinges
dc.description.refereedTRUEes
dc.description.statuspubes


Files in this item

This item appears in the following Collection(s)

Show simple item record