dc.identifier.citation | [1] Saad,W., Bennis, M. and Chen, M., A vision of 6g wireless systems: Applications, trends, technologies, and open research problems, IEEE Network 34 (3) (2020) 134–142. doi:10.1109/MNET.001.1900287. [2] Camelo, M. et al, Requirements and Specifications for the Orchestration of Network Intelligence in 6G, in: 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), IEEE, 2022, pp. 1–9. [3] ETSI, Zero-touch network and Service Management (ZSM): Means of Automation, Group report, ETSI (2020-05). [4] Wang, Y. et al, From design to practice: ETSI ENI reference architecture and instantiation for network management and orchestration using artificial intelligence, IEEE Communications Standards Magazine 4 (3) (2020) 38–45. [5] Camelo, M. et al, DAEMON: A Network Intelligence Plane for 6G Networks, in: 2022 IEEE Globecom Workshops (GC Wkshps), IEEE, 2022, pp. 1341–1346. [6] Gramaglia, M. et al, Network intelligence for virtualized ran orchestration: The daemon approach, in: 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), IEEE, 2022, pp. 482–487. [7] Chatzieleftheriou, L.E. et al, Orchestration Procedures for the Network Intelligence Stratum in 6G Networks, in: 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), IEEE, 2023, pp. 347–352. [8] h2020, D., Daemon nip presented live at eucnc 2023 (Sep. 2023). URL https://www.youtube.com/watch?v=-7qOyYUBKf0 [9] Manias, D.M., Chouman, A. and Shami, A., Model drift in dynamic networks, IEEE Communications Magazine (2023). [10] Bassoli, R. et al, Deliverable D5.2: Analysis of 6G architectural enablers’ applicability and initial technological solutions, accessed: 2024-06-19 (Oct. 2022). URL https://hexa-x.eu/deliverables/ [11] Khorsandi, B.M. et al, Deliverable D1.4: Hexa-X architecture for B5G/6G networks – final release, accessed: 2024-06-19 (Jul. 2023). URL https://hexa-x.eu/deliverables/ [12] Akgul, O. et al, Deliverable D3.3 Initial analysis of architectural enablers and framework, accessed: 2024-06-19 (Apr. 2024). URL https://hexa-x-ii.eu/results/ [13] Sta´nczak, S., Utkovski, Z. et al, Toward 6G: Key Directions and Research Questions, accessed: 2024-06-19 (2022). URL https://6g-ric.de/6g-ric/#position-paper [14] Taleb, T. et al, White Paper on 6G Networking. 6G Research Visions, accessed: 2024-06-19 (2020). URL http://urn.fi/ urn:isbn:9789526226842 [15] Yates, R.D. et al, Age of information: An introduction and survey, IEEE Journal on Selected Areas in Communications 39 (5) (2021) 1183–1210. [16] Ahmad, R. et al, Zero-day attack detection: a systematic literature review, Artificial Intelligence Review 56 (10) (2023) 10733–10811. [17] Benza¨ıd, C. and Taleb, T., Ai for beyond 5g networks: A cyber-security defense or offense enabler?, IEEE network 34 (6) (2020) 140–147. [18] Naeem, F. et al, Security and privacy for reconfigurable intelligent surface in 6g: A review of prospective applications and challenges, IEEE Open Journal of the Communications Society (2023). [19] Paez, I. et al, DAEMON Deliverable 2.1: Initial report on requirements analysis and state-of-the-art frameworks and toolsets (Jun. 2021). doi:10.5281/zenodo.5060979. URL https://doi.org/10.5281/zenodo.5060979 [20] Iovene, M. et al, Defining AI native: A key enabler for advanced intelligent telecom networks, Tech. Rep. BCSS-23:000056 Uen, Ericsson (Feb. 2023). [21] Li, P., Xing, Y. and Li, W., Distributed AI-native Architecture for 6G Networks, in: 2022 International Conference on Information Processing and Network Provisioning (ICIPNP), IEEE, 2022, pp. 57–62. [22] Rossi, D. and Zhang, L., Network artificial intelligence, fast and slow, in: Proceedings of the 1st International Workshop on Native Network Intelligence, 2022, pp. 14–20. [23] Brito, F. et al, A network architecture for scalable end-to-end management of reusable AI-based applications, in: 2023 14th International Conference on Network of the Future (NoF), IEEE, 2023, pp. 98–102. [24] D’Oro, S. et al, OrchestRAN: Orchestrating Network Intelligence in the Open RAN, IEEE Transactions on Mobile Computing (2023). [25] Kubernetes, accessed: 2024-01-08 (2024). URL https://kubernetes.io/ [26] Kubeflow, accessed: 2024-01-08 (2024). URL https://www.kubeflow.org/ [27] Eclipse Zenoh, accessed: 2024-01-08 (2024). URL https://zenoh.io/ [28] IBM, An architectural blueprint for autonomic computing, White paper, IBM (Jun, 2006). [29] 3GPP, Architecture enhancements for 5G System (5GS) to support network data analytics services, Technical Specification (TS) 23.288, 3rd Generation Partnership Project (3GPP), version 17.3.0 (December 2021). URL https://www.3gpp.org/DynaReport/23288.htm [30] Garcia-Saavedra, A. and Costa-Perez, X., O-RAN: Disrupting the virtualized RAN ecosystem, IEEE Communications Standards Magazine 5 (4) (2021) 96–103. [31] Bahare, M.K. et al, The 6G Architecture Landscape - European perspective (feb 2023). doi:10.5281/zenodo.7313232. [32] Garcia-Aviles, G. et al, Nuberu: Reliable RAN virtualization in shared platforms, in: Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, 2021, pp. 749–761. [33] Garcia-Saavedra, A. et al, DAEMON Deliverable 3.2: Refined design of real- time control and VNF intelligence mechanisms (Nov. 2022). doi:10.5281/zenodo.7525876. URL https://doi.org/10.5281/zenodo.7525876 [34] Fuentes, L. et al, DAEMON Deliverable 4.2: Refined design of intelligent orchestration and management mechanisms (Jan. 2023). doi:10.5281/zenodo.7544155. URL https://doi.org/10.5281/zenodo.7544155 [35] MLFlow, accessed: 2024-01-29 (2024). URL https://mlflow.org/ [36] ETSI, Network Functions Virtualisation (NFV); Management and Orchestration, Specification, ETSI (2014). URL https://www.etsi.org [37] O-RAN Alliance, O-RANWorking Group 2 AI/ML workflow description and requirements, Technical report, O-RAN Alliance (Oct, 2020). [38] Polese, M. et al, Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges, IEEE Communications Surveys & Tutorials (2023). [39] Slamnik-Krijeˇstorac, N. et al, An ml-driven framework for edge orchestration in a vehicular nfv mano environment, in: 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), IEEE, 2023, pp. 728–733. [40] Smart Highway Testbed, accessed: 2024-01-08 (2024). URL https://www.fed4fire.eu/testbeds/smart-highway/ [41] Zeydan, E. and Mangues-Bafalluy, J., Recent advances in data engineering for networking, IEEE Access 10 (2022) 34449–34496. [42] Brik, B. et al, A survey on explainable ai for 6g o-ran: Architecture, use cases, challenges and research directions, arXiv preprint arXiv:2307.00319 (2023). [43] Almasan, P. et al, Network digital twin: Context, enabling technologies, and opportunities, IEEE Communications Magazine 60 (11) (2022) 22– 27. | es |