• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration

Compartir
Ficheros
Camera ready (4.885Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1860
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Chatzieleftheriou, Livia Elena; Pérez-Valero, Jesús; Martin Perez, Jorge; Serrano, Pablo
Fecha
2024-10-14
Resumen
The rising popularity of Vehicle-to-Network (V2N) applications is driven by the Ultra-Reliable Low-Latency Communications (URLLC) service offered by 5G. The availability of distributed resources could be leveraged to handle the enormous traffic arising from these applications, but introduces complexity in deciding where to steer traffic under the stringent delay requirements of URLLC. In this paper, we introduce the V2N Computation Offloading and CPU Activation (V2N-COCA) problem, which aims at finding the computation offloading and the edge/cloud CPU activation decisions that minimize the operational costs, both monetary and energetic, under stringent latency constraints. Some challenges are the proven non-monotonicity of the objective function w.r.t. offloading decisions, and the no-existence of closed-formulas for the sojourn time of tasks. We present a provably tight approximation for the latter, and we design BiQui, a provably asymptotically optimal and with linear computational complexity w.r.t. computing resources algorithm for the V2N-COCA problem. We assess BiQui over real-world vehicular traffic traces, performing a sensitivity analysis and a stress-test. Results show that BiQui significantly outperforms state-of-the-art solutions, achieving optimal performance (found through exhaustive searches) in most of the scenarios.
Compartir
Ficheros
Camera ready (4.885Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1860
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!