• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Real-Time Intrusion Detection in P4-Programmable 5G User Plane Functions

Compartir
Ficheros
europ4_postprint.pdf (237.5Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1846
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Akem, Aristide Tanyi-Jong; Fiore, Marco
Fecha
2024-10-28
Resumen
Recent works have shown that Machine Learning (ML) models can be deployed in P4-programmable user planes for line rate inference on live traffic and that these user planes can also be used to accelerate the 5G User Plane Function (UPF). This work builds on these capabilities to explore how ML inference in the user plane can facilitate real-time intrusion detection in 5G networks. As a proof-of-concept, we describe how an ML model could be deployed into the UPF as a special Packet Detection Rule (PDR). We then train and deploy a tree-based classifier into a P4-programmable switch acting as the UPF and conduct experiments on a testbed with off-the-shelf hardware using experimental data from a 5G test network on a university campus. Our results confirm that running ML-based intrusion detection on P4-based UPFs ensures line-rate attack detection and classification with an accuracy of up to 98% in terms of F1 score, while keeping switch resource consumption increase under control.
Compartir
Ficheros
europ4_postprint.pdf (237.5Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1846
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!