• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

An In-Depth Analysis of COVID-19 Symptoms Considering the Co-Occurrence of Symptoms Using Clustering Algorithms

Compartir
Ficheros
Articulo principal (5.589Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1842
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3456246
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Benito Gutiérrez, Diego Javier; Rufino, Jesús; Ramirez, Juan Marcos; Fernández Anta, Antonio; Aguilar, Jose
Fecha
2024-09-15
Resumen
A comprehensive analysis of the COVID-19 pandemic is necessary to prepare for future healthcare challenges. In this regard, the large number of datasets collected during the pandemic has allowed various studies on disease behavior and characteristics. For example, collected datasets can be used to extract knowledge about the symptomatic behavior of the disease. In this work, we are interested in analyzing the relationships between the different symptoms of the disease, considering various dimensions, such as countries, variants of COVID-19, and age groups. To this end, we consider the co-occurrence of symptoms as a fundamental element. More precisely, we implemented clustering techniques to discover symptomatic patterns across the various dimensions. For instance, in analyzing the dominant patterns, we observe that symptom congestion or runny nose almost always appears with the symptom muscle pain across many dimensions. Hence, the information on symptom patterns can be helpful in decision-making processes to detect and combat COVID-19 and similar diseases.
Compartir
Ficheros
Articulo principal (5.589Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1842
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3456246
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!