dc.identifier.citation | [1] T. Koch, W. Jiang, T. Luo et al., “Towards a traffic map of the internet: Connecting the dots between popular services and users,” in Proc. ACM Workshop on Hot Topics in Networks (HotNets). ACM, 2021, p. 23–30. [2] P. Casas and R. Schatz, “Quality of Experience in Cloud services: Survey and measurements,” Computer Networks, vol. 68, pp. 149–165, 2014. [3] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing public cloud providers,” in Proc. ACM Internet Measurement Conf. (ACM IMC). ACM, 2010, p. 1–14. [4] F. Palumbo, G. Aceto, A. Botta et al., “Characterization and analysis of cloud-to-user latency: The case of Azure and AWS,” Computer Networks, vol. 184, p. 107693, 2021. [5] N. Mohan, L. Corneo, A. Zavodovski et al., “Pruning edge research with latency shears,” in Proc. ACM Workshop on Hot Topics in Networks (HotNets). ACM, 2020, p. 182–189. [6] F. Michelinakis, H. Doroud, A. Razaghpanah et al., “The cloud that runs the mobile internet: A measurement study of mobile cloud services,” in IEEE Conf. Computer Commun. (INFOCOM), 2018, pp. 1619–1627. [7] Y. Jin, S. Renganathan, G. Ananthanarayanan et al., “Zooming in on wide-area latencies to a global cloud provider,” in Proc. ACM SIGCOMM Conf. ACM, 2019, p. 104–116. [8] “RIPE Atlas,” https://atlas.ripe.net, Accessed April 2024. [9] Y. A. Wang, C. Huang, J. Li, and K. W. Ross, “Estimating the performance of hypothetical cloud service deployments: A measurement- based approach,” in IEEE Conf. Computer Commun. (INFOCOM), 2011, pp. 2372–2380. [10] O. Tomanek and L. Kencl, “CLAudit: Planetary-scale cloud latency au- diting platform,” in Proc. IEEE Int. Conf. Cloud Networking (CloudNet), 2013, pp. 138–146. [11] “Planetlab,” https://planetlab.cs.princeton.edu, [accessed April 2024]. [12] O. Tomanek, P. Mulinka, and L. Kencl, “Multidimensional cloud latency monitoring and evaluation,” Computer Networks, vol. 107, Oct. 2016. [13] R. K. P. Mok, H. Zou, R. Yang et al., “Measuring the network performance of google cloud platform,” Proc. ACM Internet Measurement Conf. (ACM IMC), 2021. [14] O. Alay, A. Lutu, R. García et al., “Measuring and assessing mobile broadband networks with MONROE,” in IEEE Int. Symp. on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2016. [15] R. Fontugne, A. Shah, and K. Cho, “Persistent last-mile congestion: Not so uncommon,” in Proc. ACM Internet Measurement Conf. (ACM IMC). ACM, 2020, p. 420–427. [16] L. Corneo, N. Mohan, A. Zavodovski et al., “(how much) can edge computing change network latency?” in IFIP Networking Conf., 2021. [17] M. Candela, E. Gregori, V. Luconi, and A. Vecchio, “Using RIPE Atlas for geolocating IP infrastructure,” IEEE Access, vol. 7, 2019. [18] O. Victor Babasanmi and J. Chavula, “Measuring cloud latency in Africa,” in Proc. IEEE Int. Conf. Cloud Networking (CloudNet), 2022, pp. 61–66. [19] A. Kedia, A. Ganesh, and A. Aggarwal, “Examining lower latency routing with overlay networks,” 2023, arxiv preprint: 2306.15174. [20] L. Corneo, M. Eder, N. Mohan et al., “Surrounded by the clouds: A comprehensive cloud reachability study,” in Proc. Int. World Wide Web Conf. (WWW). ACM, 2021, p. 295–304. [21] V. Bajpai, S. J. Eravuchira, and J. Schönwälder, “Lessons learned from using the RIPE Atlas platform for measurement research,” ACN SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, p. 35–42, jul 2015. [22] P. Sermpezis, L. Prehn, S. Kostoglou et al., “Bias in internet measurement platforms,” in Netw. Traffic Meas. and Analysis Conf. (TMA), 2023. [23] “RIPE NCC,” https://www.ripe.net/, online; accessed 16-April-2024. [24] RIPE Atlas, “Coverage and statistics,” https://atlas.ripe.net/coverage/, 2024, [Online; accessed 01-May-2024]. [25] E. A. Petros Gigis, Vasileios Kotronis, “RIPE Atlas population cover- age,” https://sg-pub.ripe.net/petros/population_coverage/, 2024, [Online; accessed 01-May-2024]. [26] R. Kistel, “RIPE Atlas architecture - how we manage our probes,” https://labs.ripe.net/author/kistel/ripe-atlas-architecture-how-we- manage-our-probes/, 2023, online; accessed 01-May-2024. [27] A. F. Zanella, A. Bazco-Nogueras, C. Ziemlicki, and M. Fiore, “Character- izing and modeling session-level mobile traffic demands from large-scale measurements,” in Proc. ACM Internet Measurement Conf. (ACM IMC), 2023, p. 696–709. [28] C. Rudin, C. Chen, Z. Chen et al., “Interpretable machine learning: Fundamental principles and 10 grand challenges,” Statistics Surveys, vol. 16, pp. 1–85, 2022. [29] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?: Explaining the predictions of any classifier,” in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. [30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in Neural Inf. Processing Systems, vol. 30, 2017. [31] C. Elsen, “RIPE Atlas probes in AWS,” https://github.com/chriselsen/ RIPE-Atlas-in-AWSs, [Online; accessed 15-Jan-2024]. | es |