• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultra-Low Latency User-Plane Cyberattack Detection in SDN-based Smart Grids

Compartir
Ficheros
e-Energy24_final.pdf (1.431Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1821
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Akem, Aristide Tanyi-Jong; Gucciardo, Michele; Fiore, Marco
Fecha
2024-06-04
Resumen
Modern power grids are smart, comprising millions of electronic devices interconnected by communication networks. This exposes them to a wide range of cyberattacks which could lead to power outages and data breaches with far-reaching consequences. Thus, the timely detection of such attacks is essential. Machine Learning (ML) models are widely used for cyberattack detection in Smart Grids (SG) based on Software-Defined Networks (SDN). However, these models either run in external servers or in-network, fully in the application or control plane or distributed between the control and user planes. In all three cases, the models do not run at line rate and incur hundreds of milliseconds of delay in attack detection. This paper explores how ML inference in programmable switches can enable accelerated attack detection and mitigation in SGs at line rate with sub-microsecond delay. The proposed workflow brings the concept of user plane inference to SDN-based SGs and deploys a trained Decision Tree (DT) model into the switch pipeline for real-time inference on live traffic. The model is implemented in a testbed with production-grade Intel Tofino switches, where experiments are run with a DNP3 intrusion detection dataset. Results reveal how the model can distinguish multiple attacks against SGs with an accuracy of 99%, incurring a delay within 356 nanoseconds, while consuming a tiny portion of the available resources in the switch.
Compartir
Ficheros
e-Energy24_final.pdf (1.431Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1821
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!