Mostrar el registro sencillo del ítem

dc.contributor.authorAkem, Aristide Tanyi-Jong 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2024-03-25T17:49:02Z
dc.date.available2024-03-25T17:49:02Z
dc.date.issued2024-05-06
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1801
dc.description.abstractGrowing network complexity has rendered human-in-the-loop network management approaches obsolete. The advent of Software-Defined Networking (SDN) has enabled network automation, with Machine Learning (ML) models running in the control plane. However, such control plane models do not run at line rate and would not satisfy the stringent latency requirements of time-sensitive next-generation applications. In this PhD project, we exploit recent advances in programmable switches and associated languages like P4 to enable data-driven management of networks by running ML models for inference in programmable switches at line rate, with high throughput and low latency. Resulting contributions include solutions for in-switch classification at packet level, flow level, or both, with use cases in network security, service identification, and device fingerprinting in commercial off-the-shelf switches.es
dc.description.sponsorshipEuropean Union’s Horizon Europe research and innovation programme under Marie Skłodowska-Curie grant agreement no. 860239es
dc.description.sponsorshipSmart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101139270es
dc.language.isoenges
dc.titleTowards Data-Driven Management of Mobile Networks through User Plane Inferencees
dc.typeconference objectes
dc.conference.date6-10 May 2024es
dc.conference.placeSeoul, South Koreaes
dc.conference.titleIEEE Network Operations and Management Symposium *
dc.event.typeconferencees
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.acronymNOMS*
dc.rankB*
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860239/EU/Big dAta aNalYtics for radio Access Networks/BANYANes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON-JU-SNS-2023/101139270es
dc.relation.projectNameBANYAN (Big dAta aNalYtics for radio Access Networks)es
dc.relation.projectNameORIGAMI (Optimized resource integration and global architecture for mobile infrastructure for 6G)es
dc.subject.keywordIn-switch inference, machine learning, P4es
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem