• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

AICHRONOLENS: Advancing Explainability for Time Series AI Forecasting in Mobile Networks

Compartir
Ficheros
Paper Infocom Claudio.pdf (2.667Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1788
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Fiandrino, Claudio; Perez Gomez, Eloy; Férnandez Pérez, Pablo; Mohammadalizadeh, Hossein; Fiore, Marco; Widmer, Joerg
Fecha
2024-05
Resumen
Next-generation mobile networks will increasingly rely on the ability to forecast traffic patterns for resource management. Usually, this translates into forecasting diverse objectives like traffic load, bandwidth, or channel spectrum utilization, measured over time. Among the other techniques, Long-Short Term Memory (LSTM) proved very successful for this task. Unfortunately, the inherent complexity of these models makes them hard to interpret and, thus, hampers their deployment in production networks. To make the problem worsen, EXplainable Artificial Intelligence (XAI) techniques, which are primarily conceived for computer vision and natural language processing, fail to provide useful insights: they are blind to the temporal characteristics of the input and only work well with highly rich semantic data like images or text. In this paper, we take the research on XAI for time series forecasting one step further proposing AICHRONOLENS, a new tool that links legacy XAI explanations with the temporal properties of the input. In such a way, AICHRONOLENS makes it possible to dive deep into the model behavior and spot, among other aspects, the hidden cause of errors. Extensive evaluations with real-world mobile traffic traces pinpoint model behaviors that would not be possible to spot otherwise and model performance can increase by 32 %.
Compartir
Ficheros
Paper Infocom Claudio.pdf (2.667Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1788
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!