dc.contributor.author | İşler, Devriş | |
dc.contributor.author | Cabana, Elisa | |
dc.contributor.author | García-Recuero, Álvaro | |
dc.contributor.author | Koutrika, Georgia | |
dc.contributor.author | Laoutaris, Nikolaos | |
dc.date.accessioned | 2024-01-12T16:25:47Z | |
dc.date.available | 2024-01-12T16:25:47Z | |
dc.date.issued | 2024-05 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12761/1779 | |
dc.description.abstract | We present a novel technique for modulating the appearance frequency of a few tokens within a dataset for encoding an invisible watermark that can be used to protect ownership rights upon data. We develop optimal as well as fast heuristic algorithms for creating and verifying such watermarks. We also demonstrate the robustness of our technique against various attacks and derive analytical bounds for the false positive probability of erroneously “detecting” a watermark on a dataset that does not carry it. Our technique is applicable to both single dimensional and multidimensional datasets, is independent of token type, and can be used in a variety of use cases that involve buying and selling data in contemporary data marketplaces. | es |
dc.description.sponsorship | European Union’s HORIZON | es |
dc.description.sponsorship | The Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU/PRTR. | es |
dc.language.iso | eng | es |
dc.title | FreqyWM: Frequency WaterMarking for the New Data Economy | es |
dc.type | conference object | es |
dc.conference.date | 13-16 May 2024 | es |
dc.conference.place | Utrecht, Netherlands | es |
dc.conference.title | International Conference on Data Engineering | * |
dc.event.type | conference | es |
dc.pres.type | paper | es |
dc.type.hasVersion | AM | es |
dc.rights.accessRights | open access | es |
dc.acronym | ICDE | * |
dc.rank | A* | * |
dc.relation.projectID | info:eu-repo/grantAgreement/EU/HORIZON/101070069 | es |
dc.relation.projectID | REGAGE22e00052829516 | es |
dc.relation.projectName | DataBri-X: Data Process & Technological Bricks for expanding digital value creation in European Data Spaces. | es |
dc.relation.projectName | MLEDGE: Cloud and Edge Machine Learning | es |
dc.subject.keyword | intellectual property | es |
dc.subject.keyword | digital rights management | es |
dc.subject.keyword | watermarking | es |
dc.subject.keyword | ownership rights | es |
dc.subject.keyword | data economy | es |
dc.description.refereed | TRUE | es |
dc.description.status | inpress | es |