• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Case studies of clinical decision-making through prescriptive models based on machine learning

Compartir
Ficheros
Case_studies_of_clinical_decision_makingSinTrazas.pdf (627.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1761
DOI: 10.1016/j.cmpb.2023.107829
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Hoyos, William; Aguilar, Jose; Raciny, Mayra; Toro, Mauricio
Fecha
2023-11-30
Resumen
Background The development of computational methodologies to support clinical decision-making is of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytic is a promising area to support decision-making in the monitoring, treatment and prevention of diseases. These aspects remain a challenge for medical professionals and health authorities. Materials and Methods In this study, we propose a methodology for the development of prescriptive models to support decision-making in clinical settings. The prescriptive model requires a predictive model to build the prescriptions. The predictive model is developed using fuzzy cognitive maps and the particle swarm optimization algorithm, while the prescriptive model is developed with an extension of fuzzy cognitive maps that combines them with genetic algorithms. We evaluated the proposed approach in three case studies related to monitoring (warfarin dose estimation), treatment (severe dengue) and prevention (geohelminthiasis) of diseases. Results The performance of the developed prescriptive models demonstrated the ability to estimate warfarin doses in coagulated patients, prescribe treatment for severe dengue and generate actions aimed at the prevention of geohelminthiasis. Additionally, the predictive models can predict coagulation indices, severe dengue mortality and soil-transmitted helminth infections. Conclusions The developed models performed well to prescribe actions aimed to monitor, treat and prevent diseases. This type of strategy allows supporting decision-making in clinical settings. However, validations in health institutions are required for their implementation.
Compartir
Ficheros
Case_studies_of_clinical_decision_makingSinTrazas.pdf (627.1Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1761
DOI: 10.1016/j.cmpb.2023.107829
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!