Mostrar el registro sencillo del ítem

dc.contributor.authorApostolakis, Nikolaos 
dc.contributor.authorGramaglia, Marco 
dc.contributor.authorChatzieleftheriou, Livia Elena 
dc.contributor.authorSubramanya, Tejas
dc.contributor.authorBanchs, Albert 
dc.contributor.authorSanneck, Henning
dc.date.accessioned2023-10-13T16:23:46Z
dc.date.available2023-10-13T16:23:46Z
dc.date.issued2023-11-28
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1752
dc.description.abstractNext-generation mobile networks will rely on their autonomous operation. Virtual Network Functions empowered by Artificial Intelligence (AI) and Machine Learning (ML) can adapt to varying environments that encompass both network conditions and the cloud platform executing them. In this view, it becomes paramount to understand why AI/ML algorithms made a decision, to be able to reason upon those decisions and, eventually, take further decisions related to e.g., network orchestration. In this paper, we present ATHENA, an ML-based radio resource scheduler for virtualized Radio Access Network (RAN) system. Our real-software implementation shows that the proposed ML-based approach can outperform the baseline solution. We discuss how additional re-orchestration actions can be taken by analyzing our scheduling decisions and learning from the past.es
dc.language.isoenges
dc.titleATHENA: Machine Learning and Reasoning for Radio Resources Scheduling in vRAN systemses
dc.typejournal articlees
dc.journal.titleIEEE Journal on Selected Areas in Communicationses
dc.rights.accessRightsrestricted accesses
dc.identifier.doi10.1109/JSAC.2023.3336155
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem